Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/11108/649
Titel: 

Attend2trend: Attention-Based LSTM Model for Detecting and Forecasting of Trending Topics

Autoren: 
Saleh, Ahmed
Datum: 
2024
Quellenangabe: 
[Editor:] Sheng, Quan Z. et al. [Title:] Advanced Data Mining and Applications 20th International Conference, ADMA 2024, Sydney, NSW, Australia, December 3–5, 2024, Proceedings, Part V [Series:] Lecture Notes in Computer Science [No.:] 15391 [Publisher:] Springer [Place:] Singapore [Pages:] 142–154
Zusammenfassung: 
Trend detection and forecasting is an important area of machine learning and a crucial task for researchers, news agencies, organizations, and more. In this paper, we propose an auto-encoder LSTM model with attention units, attend2trend, for the task of trend detection and forecasting. The model utilizes the attention units to assign different weights to the input values based on their importance to the predicted value(s). We used two large datasets from Twitter and Wikipedia to evaluate our model. Our preliminary results show that attend2trend predicts trending topics with high accuracy compared with other statistical and deep learning models.
Persistent Identifier der Erstveröffentlichung: 
Dokumentversion: 
Published Version

Datei(en):
Mit dieser Publikation sind keine Dateien verknüpft.





Publikationen in ZBWPub sind urheberrechtlich geschützt.