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Abstract—Ultrafine named entity typing (UFET) refers to the
assignment of predefined labels to entity mentions in a given
context. In contrast to traditional named entity typing, the
number of potential labels is in the thousands and one mention
can have more than one assigned type. Previous approaches either
depend on large training datasets, or require inefficient encoding
of all input-type combinations. Therefore, there is a need for
investigating the efficiency during training and prediction of
entity typing models in the ultrafine-grained setting, considering
its distinctively bigger search space, compared to the coarse-
and fine-grained tasks. To efficiently solve UFET, we propose
DECENT, a lightweight model that encodes, using a pretrained
language model, the input sentences separately from the type
labels. Additionally, we make use of negative oversampling to
speed up the training while improving the generalization of
unseen types. Using an openly available UFET dataset, we
evaluated the classification and runtime performance of DECENT
and observed that training and prediction runtime is orders of
magnitude faster than the current state-of-the-art approaches,
while maintaining a competitive classification performance.

Index Terms—ultrafine entity typing, entity typing, named
entity recognition

I. INTRODUCTION

One of the essential tasks of information extraction is
the recognition and classification of named entities in text.
These are critical tasks for digital libraries, especially for the
extraction of valuable information from large amounts of text
and for the retrieval of relevant documents and knowledge.
Additionally, recognizing entity mentions in text is a key step
in the construction of knowledge graphs.

The task can be broken down into two subtasks: named
entity recognition (NER), where the boundaries of entity
mentions are predicted, and named entity typing (NET), where
the entity mention is classified into one or more pre-defined
entity types. In the literature, named entity recognition (NER)
is sometimes defined as one single task of recognition and
classification. In the scope of this paper, we separate recogni-
tion from classification (typing) and focus on the latter.

Traditional NET focuses on a small set of coarse-grained
entity types. For instance, CoNLL-03 [1] uses 4 general types,
namely person, location, organization and miscellaneous.
Finer-grained entity types have been proposed in different
works [2]–[5], further defining hierarchies and increasing the
number of entity types from a small set to hundreds (e.g.
person could be further divided into artist, politician, scholar,
sportsmen, etc.). However, with an increased number of types,

additional challenges emerge. First, many entities and entity
types are rarely (or even never) seen during training, resulting
in the long tail problem [6]. Second, the assumption of mutual
exclusion between entity types breaks, which means the task
transforms from a single-label into a multi-label classification
problem. Recent studies also introduced the task of ultrafine
named entity typing, in which the number of entity types
surpasses a thousand or even ten thousand to achieve a more
precise semantic coverage than the fine-grained NET task [7]–
[10].

Three examples taken from the UFET dataset [8] are
depicted in Table I to illustrate the ultrafine-grained typing
task. The first one assigns five different types to the entity
Ivan Lendl. The task combines coarse-grain types like person,
fine-grain like player and ultrafine-grain like tennis player.
The second example illustrates another additional challenge
present in the task, which is the presence of mentions in the
form of pronouns. This differs slightly from the traditional
NET task, in which only direct mentions to the entities like
the first example are considered. Finding the right entity
given the pronoun and classifying accordingly is a particular
challenging for UFET models. Lastly, in the third example, the
nominal mention the ball differs from the named entities by
containing simpler noun phrases with entity types like football
that strongly depend on the context of the mention.

To this end, we propose DECENT, a model which is efficient
in terms of the amount of data needed for training and the
runtime needed for training and prediction, while maintaining
competitive classification performance for the UFET task. We
share the code for the model and the experiments online.1

II. RELATED WORK

For coarse-grained NER and NET, one single model is re-
sponsible for both finding the entity boundaries and classifying
among the set of entity types. Notable models for this task are
the ones proposed in [11], [12], [13], and [14].

a) Fine-grained Entity Typing.: [3] were the first to
introduce a general fine-grained entity type ontology by sepa-
rating a set of coarse-grained entity types into 147 fine-grained
entity types. However, there was already an earlier approach
using fine-grained named entity typing focused on person-
related types [2]. [15] laid additional groundwork for the field

1https://github.com/HPI-Information-Systems/DECENT



TABLE I
EXEMPLES OF ENTITY MENTIONS AND THEIR ULTRAFINE-GRAINED

ENTITY TYPES AS FOUND IN UFET

Sentence Labels

Jose Luis Clerc was the defending champion
but lost in the semifinals to Ivan Lendl.

person,
athlete, player,
tennis player,
winner

Pacino , 65 , will also direct the tragi -
comedy ’Salomaybe?’ while taking on the
Herod role he has played on stage in both
New York and Los Angeles, according to
Daily Variety.

person, actor,
artist, director,
administrator,
conductor,
creator,
performer,
entertainer

Just a minute later Rafael Van der Vaart
brought Real level , although replays sug-
gest he controlled the ball with his hand,
and then Xabi Alonso headed them into the
lead .

object, ball,
equipment,
football

of fine-grained NET and emphasized the advantages of having
a fine-grained type structure. [4] published one of the first large
benchmark datasets for fine-grained NET called FIGER, which
covers 112 different entity types. To structure the ontologies,
researchers usually provide additional information in the form
of hierarchies. For example, actor is a subtype of person or
location is the supertype of country, city, etc. Many studies
utilize external knowledge such as knowledge bases to improve
fine-grained type inference, but [5] suggest restricting the
acceptable labels to those that can be inferred from the local
context only.

b) Ultrafine Entity Typing.: Even more detailed entity
type sets have been studied, for which models have to classify
the entities among extensive collections of types. The standard
benchmark for the ultrafine named entity typing task, which
usually spans thousands of possible entity types, is the UFET
dataset by [8]. Their ontology consists of 9 coarse, general
types (e.g. person, organization, etc.), 121 fine-grained types
(e.g. artist, athlete, etc.), and 10,201 ultra-fine types (e.g.
martial artist, street artist, etc.) with no predefined hierar-
chy. They provide 5,994 human-annotated examples evenly
split into train, validation, and test set. In these examples,
only 2,519 entity types from the full set were annotated. In
addition, there is distantly supervised data in the form of
5.2M samples, automatically labeled through entity linking
and 20M samples labeled by assigning types using to the
head words of nominal entity mentions. Further, [8] designed
UFET-BILSTM that serves as a baseline for future methods.
In this approach, each input representation is a concatenation
of the context representation and the mention representation.
They use word and character embeddings, and use the distantly
supervised data to compute entity type embeddings, which are
then used to infer type probabilities for a particular sentence
and mention. Other models use UFET-BILSTM as the base
architecture and improve specific aspects like label correlations
[16] and mention representations [17]. A different approach,

BOX4TYPES [18], utilize box embeddings [19] to achieve
named entity typing by projecting the textual representation of
the input into a high-dimensional hyper-rectangular box space.

[9] train the multi-label classifier MLMET on a combination
of the human-annotated and the distantly supervise data from
[8], with additionally generated data from using masked lan-
guage modeling [20]. Their approach requires large amounts
of training data to cover all entity types. They employ all the
distantly supervised portion of the UFET dataset. In addition,
the training of the model has 3 different stages: first pretraining
with the weakly supervised data, then fine-tuning with the
human annotated data, and finally a self-training stage.

[10] use the indirect supervision from natural language
inference (NLI) for their model LITE to type named entities.
They convert named entity typing into an NLI task by treating
the input with the entity mention as the premise and creating
the hypothesis from a candidate label using a template in the
form “<Entity> is a <Type>”. They employ RoBERTa-large
[21] that has already been fine-tuned on the MNLI dataset [22].
They further fine-tune the model on the manually annotated
part of the UFET dataset with a learning-to-rank objective
by sampling an incorrect label for each correct type. LITE
predicts the entailment score for every type label in the UFET
dataset ontology given an entity-mentioning input to produce
a prediction of entity types, which can be inefficient in terms
of runtime at prediction time.

In contrast to the aforementioned models, our approach does
not require huge amounts of labeled data, making it more
data efficient and reducing training and prediction runtime
significantly. In addition, our model avoids the costly full
encoding of each mention-type pair during prediction and does
not rely on natural language templates or task descriptions.

III. DECENT

Our proposed model (Decoupled Encoding and Cross-
Attention for Efficient Named Entity Typing) combines a
lightweight design with a special learning procedure to enable
fast training and prediction.

Similar to LITE [10], we use a pretrained language model
(PLM) for contextualized embeddings and the semantics of
type labels, making it possible to classify entity types that
were not present in the training data. With this, the model
does not require examples for each of the ultrafine entity
types, avoiding the need of an extensive (distantly) supervised
dataset. However, we do not encode sentence and entity types
as NLI pairs. We argue that a lighter model on independently
encoded sentences and entity types is more efficient and opens
the possibility of using more negative samples.

Given an input x = (s,m) with the context s = (s1, . . . , sk)
and the marked entity mention m = (m1, . . . ,ml) our objec-
tive is to predict all applicable entity types T ⊆ T from the
ontology T . For example:

• “The movie ’Gran Torino’ stars Clint Eastwood”
In this sentence with the marked entity Clint Eastwood, we
want to assign types such as person, actor, entertainer, etc.
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Fig. 1. DECENT’s general architecture for ultrafine named entity typing.

To independently encode the context s and the different
entity types, our model M consists of two parts, with a design
inspired by FASTMATCH [23]. An overview of our architecture
is shown in Figure 1.

First, the encoder E encodes the input x and the type label
t ∈ T separately, resulting in the corresponding embedded
representations xh and yh.

xh = E(x)
yh = E(t)

This way, the embeddings of the type labels can also be
precomputed and stored, as they do not depend on the input
x. Similar to LRN [24], we add special tokens [M/] and [/M ]
enclosing the entity mention m in the input sentence x. The
special tokens are used later to distinguish the entity from the
rest of the sentence.

Then we apply a lightweight classifier C on top of the
contextualized embeddings produced by E . The internal clas-
sifier’s architecture is shown in Figure 2.

The classifier incorporates a cross-attention [25], [26] mech-
anism CA that performs token-to-token interaction between the
embeddings of the input and the type label. In contrast to
the original scaled dot-product attention, we use V as both
keys and values (see Equation 1). In our case, Q and V refer
to sequences of token embeddings, each having the size of
encoder dimension dE .

A(Q,V ) = softmax(
QV T

√
d

)V ∈ Rn×d (1)

We apply the attention mechanism to the embeddings xh

and yh, treating xh as the queries, yh as values, and vice versa.
The vector representations xc and yc encode the interactions
between the sentence and the type label.

xc = CA(xh, yh)

yc = CA(yh, xh)

Similar to FASTMATCH, we apply the attention mechanism
again to aggregate the local interactions between tokens into a
global representation. To achieve this, we compute the atten-
tion for the representation token [M/] in the input sequence:

xs
[M/] = A(xc

[M/], x
c)

As stated by [23], the intuition is that xc
[M/] is the representa-

tion of the cross-attention interaction between the sequences.
Therefore, the token-wise interactions consistent with the rep-
resentation should receive more weight. For the representation
of the type label after cross-attention, we compute the average
of the type label embeddings yc.

Lastly, we feed xr, the concatenation of all the input and
label representations from before and after cross-attention, into
a multi-layer perceptron CF with one hidden layer of size |H|,
that outputs an annotation probability p ∈ [0, 1] for the type
t ∈ T (Equation 3).

xr = xh
[M/] ⊕ xs

[M/] ⊕ avg(yc)⊕ avg(yh) (2)

p = P(t ∈ T |x) (3)
= CF (xr)

= σ(W2 × ReLU(W1 × xr + b1) + b2) ∈ (0, 1)

a) Training Procedure.: The classification head com-
putes the probability p for one specific entity type y, thus,
similar to LITE, non annotated types are assumed to be
negative types. Let T be all the annotated types from the
label space T for the input x = (s,m). Therefore, we define
T = T \ T as the entity types from the ontology that have
not been assigned to x. For simplicity, we refer to T and
T as the positive and negative types, respectively. LITE uses
one negative type for each positive type during training, but
because the classification head in our model is lighter, we opt
for oversampling from the negative types.

For each input x, we sample one positive type from T and
rneg negative types from T and train with the respective class
labels. This is particularly important for large ontologies such
as the one of the UFET dataset [8], for which the majority of
entity types have not been manually annotated. As our model
outputs a classification probability p ∈ (0, 1) for each entity
type, we use binary cross entropy loss as our loss function.

b) Prediction Procedure.: At prediction time, for an
input (s,m), s is encoded, and the cross attention head
computes p for each of the entity types t ∈ T . Note that
all the entity types can be pre-encoded and the classification
head is significantly lighter compared to the PLM encoder. If
p is above a certain threshold γ, we choose t as one of the
predictions for (s,m).
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Fig. 2. The cross attention classification head as it processes the embeddings of input and type label. (a) shows the details of the cross-attention mechanism.

IV. EXPERIMENTS

To evaluate the validity of our approach, we conduct ex-
periments on the UFET benchmark from [8] and compare the
runtime and classification performance of our model DECENT
with UFET-BILSTM [8], MLMET [9] and LITE [10], which
correspond to the original proposed model with UFET, and the
two latest state-of-the-art models.

For our model, we use RoBERTa-large [21] as the encoder,
which was also used by LITE. We use the implementation
from Huggingface’s Transformers library [27]2. We conduct a
hyperparameter search for the following parameters using the
validation set and optimize for macro-F1 score. The following
values are used for the final evaluation:

• Learning rate (encoder): 5× 10−6 j
• Learning rate (head): 5× 10−4

• Dropout probability (head): 0.5
• Negative oversampling rate rneg: 31
• Prediction threshold γ : 0.9

2https://huggingface.co/roberta-large

TABLE II
GENERAL PREDICTION PERFORMANCE ON THE TEST SPLIT OF UFET. ALL

THE REPORTED RESULTS ARE MEASURED IN MACRO-AVERAGED SCORES

Model P R F1

UFET-BILSTM 48.1 23.2 31.3
MLMET 53.6 45.3 49.1
LITEH 48.7 45.8 47.2
LITEw/o lab dep. 53.3 46.6 49.7
LITE 52.4 48.9 50.6

DECENT 50.8 48.7 49.7
† marks scores calculated with the pub-

licly available model checkpoint.
Bold means best model and underline

means second best

A. Classification Performance

Firstly, we want to evaluate the quality of the predictions of
DECENT in comparison to the baselines. In case of LITE we
also evaluate different configurations: LITEH is only trained
using the human-annotated data and LITEw/o lab dep., which is
pretrained on the MLNI benchmark [22] but does not rely on
additional information about the label space in the form of
label dependencies.

https://huggingface.co/roberta-large


TABLE III
PREDICTION PERFORMANCE FOR DIFFERENT TYPE GRANULARITIES IN UFET

Model
Coarse (9) Fine (121) Ultrafine (10,201)

P R F1 P R F1 P R F1

UFET-BILSTM 60.3 61.6 61.0 40.4 38.4 39.4 42.8 8.8 14.6
MLMET† 69.3 84.9 76.3 47.0 65.5 54.7 47.5 31.9 38.1
LITE† 72.3 82.8 77.2 57.7 59.2 58.4 41.7 39.5 40.5

DECENT 71.6 84.8 77.6 55.7 60.2 57.9 42.7 36.5 39.4
† marks scores calculated with the publicly available model checkpoint.
Bold means best model and underline means second best.

TABLE IV
COMPARISON OF PREDICTION PERFORMANCE FOR DIFFERENT TYPES OF ENTITY MENTIONS IN UFET

Model
Named Entity Pronoun Nominal

P R F1 P R F1 P R F1

MLMET† 57.6 55.6 56.6 54.8 50.8 52.7 49.1 39.4 43.7
LITE† 54.0 58.8 56.3 54.6 53.7 54.2 46.9 45.0 45.9

DECENT 54.9 57.0 56.0 57.0 53.7 55.3 44.4 42.2 43.3
† marks scores calculated with the publicly available model checkpoint.

For comparison, we use the macro-averaged precision (P),
recall (R) and F1 scores. The F1 score is computed as the
harmonic mean of macro-averaged P and R. For the baseline
methods, we compare against their reported results.

The prediction results are shown in Table II. Here we see
that DECENT performs better than the original UFET dataset
baseline UFET-BILSTM and has comparable results to both,
MLMET and LITE. Interestingly, our approach performs better
than LITE when it is solely trained on the human-annotated
data (LITEH) and performs similar to the model pretrained
on the natural language inference dataset MNLI (LITENLI+H).
Only additional information through label dependencies allow
for better prediction performance compared to our approach.
We attribute this to the negative oversampling, which allows
DECENT to learn not only from the explicit annotations, but
from a bigger portion of the ontology.

We perform a more in-depth analysis on the predictions
of the models separating the entity types into their levels of
granularity as defined originally in the UFET dataset. The
corresponding metrics are presented in Table III. Here we
notice that DECENT performs consistently better than MLMET
regarding the macro-F1 score, although our approach was
never trained with positive examples for the majority of entity
types. DECENT also performs similarly to LITE, even though
LITE has a more sophisticated encoding procedure and an
additional loss objective in the form of label dependency,
which uses inferred hierarchical relations among entity types.

Following the analysis performed by MLMET [9] we also
analyze the performance with different types of entity men-
tions present in UFET. Here the mentions are classified as
named entities (e.g. USA) when the words start with a capital
letter, pronouns (e.g. they) defined by a pre-defined set and
nominal (e.g. the president) for the rest of the mentions.

The results for each category can be seen in Table IV.
They illustrate the strengths and weaknesses of the three
models. DECENT performs equally well for named entities,
but slightly worse for nominal mentions compared to LITE.
This is expected as nominal mentions are convoluted, and it
can be difficult for the PLM to encode the headword properly.
However, as LITE encodes the input together with the label, it
should be easier for the model to focus on the critical parts in a
long nominal mention. As we can see, our approach performs
noticeably better for pronoun mentions, which is a surprise
considering the full encoding of LITE.
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Fig. 3. Macro-F1 score on the validation set, throughout the training process,
using different oversampling rates. The lines were smoothed using a moving
average of window 3 for better readability



a) Oversampling Rate.: Being able to sample multiple
negative types for each of the positive examples is one of the
success factors of DECENT. More precisely, for each positive
type, we sample rneg negative types where rneg refers to the
negative oversampling rate. To analyze the impact of rneg , we
conduct experiments with the following negative oversampling
rates: {1, 3, 7, 15, 31, 63, 127}. We show the development of
the macro-F1 score on the validation split during training in
Figure 3. Equally sampling of positive and negative samples
(rneg = 1) does not produce desirable results. The sampling
rates {31, 63, 127} seem to work evenly well and only differ
when the model starts converging. Naturally, the higher the
oversampling rate, the earlier the convergence starts, as the
effective batch size is much larger. On the other hand, if the
oversampling rate is too high, there is an increased risk of
overfitting, which we can observe in a slight drop in prediction
performance for rneg = 127 at the end of the training. This
assumption is further supported by the increasing validation
loss for this rate towards the end of training. Therefore,
choosing the negative oversampling rate as low as possible
while maintaining prediction performance is desirable.

b) Zero-Shot and Few-Shot Performance.: One of the
benefits of using the label semantics for entity typing is the
ability to run predictions with unseen types. For instance, in
the UFET dataset, the entity type castle is not present in
the training split, however a model which learned to predict
types such as building, can use the relatedness between the
two labels to infer predictions for the first. Among MLMET,
LITE, and DECENT, only LITE and DECENT can perform such
generalization. MLMET, on the other hand, cannot directly
predict new entity types without retraining; thus it must rely
on weak supervision to observe examples from all the types
during training. Therefore, we additionally evaluate the ability
of the models for predicting entity types not present or rarely
present in the human-annotated portion of the UFET dataset.
The results are shown in Table V.

The evaluated entity types are split in three groups, depend-
ing on their frequency in the training set; zero, one to five,
and six to ten shots. We compare micro-averaged F1 scores
in these cases. The reason for not using macro-averaged F1
is that there might be sentences without entity types falling
into these 3 groups, hence macro-scores might aggregate over
ill-defined sample-wise scores.

DECENT performs better than MLMET on all three groups,
although our model had only access, during training, to a
limited number of training examples (2K vs. 29M ). This also
underlines the superiority of semantic typing, which we exploit
by using label encodings. However, our approach falls behind
compared to LITE. This suggests that pair-wise encoding
with multiple self-attention layers has a strong generalization
potential compared to our lightweight classification head.

c) Fine-grained Typing.: Our model is designed to pre-
dict types from an ultrafine-grained ontology; however, we
compare the performance of DECENT under the fine-grained
setting. For that, we use the commonly used OntoNotes [5]
and FIGER [4] datasets. In addition, for LITE and DECENT we

TABLE V
ZERO-SHOT AND FEW-SHOT PERFORMANCE IN MICRO-AVERAGED

SCORES. F10 REFERS TO THE PERFORMANCE ON ENTITY TYPES NOT
PRESENT IN THE HUMAN-ANNOTATED PORTION OF UFET. F1m−n

REFERS TO ENTITY TYPES ANNOTATED BETWEEN m AND n TIMES.

Model F10 F11-5 F16-10

MLMET 16.8 28.8 33.6
LITE 23.8 32.1 36.4

DECENT 17.0 31.2 35.6

TABLE VI
PREDICTION PERFORMANCE FOR THE FINE-GRAINED NAMED ENTITY

TYPING BENCHMARKS ONTONOTES [5] AND FIGER [4].

Model OntoNotes FIGER

MLMET 85.4 -
LITE (transfer) 86.6 80.1
LITE (trained) 86.4 86.7

DECENT (transfer) 83.5 75.0
DECENT (trained) 81.2 84.6

tested two different strategies, transferring the model trained
on UFET to the fine-grained setup without fine-tuning, and
training directly on the new datasets.

The results of the fine-grained evaluation are observed in Ta-
ble VI, where we see that LITE remains the better performing
model. DECENT performs worse with both strategies. We can
see that our approach is also suited for fine-grained named
entity typing, but lacks in performance. We believe that in
the fine-grained scenario, the negative oversampling effect is
limited. Therefore, we deduce that our approach is more fitting
for the ultrafine-grained named entity typing scenario, as the
advantage of our model design becomes more apparent with
a much larger ontology.

d) Ablation Study.: To analyze the influence of differ-
ent components of our approach, we consider the following
variants regarding the model design. First, we evaluate the
performance of our model without the cross-attention between
input and label tokens (DECENTNO CA). The cross-encoded
representations of the input and label are replaced with ran-
domly initialized vectors that are optimized during training
to keep the number of parameters in the classification head
the same. These vectors are the same for every input-label
combination. Second, we consider one version of DECENT
trained by sampling only one negative type for every pos-
itive type (DECENTNO OS), effectively omitting the negative
oversampling (rn = 1). Third, we consider a model variant
that samples negative types solely from types present in the
training split (DECENTNO OOV). This configuration examines
whether there is merit in predicting the annotation probability
for type labels only considered for negative examples during
training. Fourth, we evaluate a variant of our approach us-
ing RoBERTa-base [21], instead of RoBERTa-large as PLM
backbone (DECENTBASE).

The results are shown in Table VIII. Here we can see that all
variants perform significantly worse than the proposed model.



TABLE VII
EXEMPLARY PREDICTIONS OF OUR MODEL WITH AND WITHOUT THE CROSS-ATTENTION MECHANISM. CORRECT PREDICTIONS ARE MARKED IN BOLD.

Input Labels Prediction

In practice, this conviction means that if
the journalist continues his critical line in
his publications, he will probably end up
behind bars”, said Adil Soz.

person, adult, investiga-
tor, journalist, male, pro-
fessional, reporter, writer,
communicator

DECENT: person, adult, journalist, male,
reporter, writer, criminal

w/o cross-attention: person

The Thomas Viaduct, located over
Levering Avenue at the entrance to
the Patapsco Valley State Park, is
the oldest stone curved bridge in the
world.

object, bridge, structure,
construction

DECENT: object, bridge, structure,
construction

w/o cross-attention: object, structure,
location, place, building, facility, road

TABLE VIII
PREDICTION PERFORMANCE ACHIEVED BY DIFFERENT VARIANTS OF OUR

APPROACH.

Model P R F1

DECENT 50.8 48.7 49.7
DECENTNO CA 46.3 42.6 44.4
DECENTNO OS 61.1 17.9 27.7
DECENTNO OOV 45.5 43.4 44.4
DECENTBASE 47.8 48.3 48.1

Negative oversampling has the largest effect on model perfor-
mance among the modifications we considered for the ablation
study. Having more negative examples effectively improves
recall, resulting in a better balance between precision and
recall. The performance of the other two variants compared
to the baseline models (Table II) show the importance of
these components in the architecture of DECENT for obtaining
competitive results. In contrast, using the base version of the
PLM instead of the large version does not have a strong
negative impact on the performance of the model.

Two examples of predictions with and without the cross-
attention mechanism are depicted in Table VII. Both examples
underline how the cross-attention mechanism helps to focus
on important information in the context, thereby improving
the prediction.

B. Qualitative Analysis

In order to illustrate the differences between the predictions
of DECENT and LITE, we present in Table IX a selection of
examples from the validation and test splits of UFET and the
final types selected by both models. E1 and E2 are successful
cases, favoring the prediction of DECENT in comparison with
LITE. In the first case, our model predicts the same number of
types as LITE, but with a higher precision. This is consistent
with the results found in Table IV regarding performance on
pronouns. The second one is a case of better recall, in which
both models have perfect precision, but DECENT classifies the
mention with more types, thus having better coverage of the
ground truth.

E3, on the other hand, shows better recall from LITE,
that includes all three types in the predictions, whereas our
model only includes one. We speculate that the reason behind

this is the label dependency loss included in LITE. In this
case organization, government and administration are types
which are likely to appear together, showing some degree of
correlation.

C. Runtime Performance

Although the classification performance is important to
understand the quality of the model predictions, our main con-
tribution is in the efficiency during training and prediction. Our
hypothesis is that the decoupled encoding of input and label,
in combination with a dedicated cross-attention classification
head, will reduce the time needed to predict which of the entity
types correspond to a particular entity mention. For training,
our model makes use of only the human annotated portion of
the UFET dataset, which, along with the lightweight model,
should result in lower training times.

In order to compare the models, we measure the runtimes on
a single NVIDIA DGX A100 (40GB) GPU with 32 CPU cores
and 32GB RAM. We use each model’s maximum possible
batch size for a fair comparison. We use the training and
validation splits of the UFET dataset for measuring training
and prediction times, respectively. To approximate the full
training times we execute the training until the epoch runtime
becomes stable, and then extrapolate this value according
to the suggested number of epochs for each model. For
MLMET we use the number of steps according to the published
implementation3, and extrapolate according to the number of
samples used for each stage. For LITE, we measure epoch
duration and extrapolate with the suggested number of epochs
2000, and finally, DECENT is trained for 500 epochs.

For prediction, we use the validation split of the UFET
dataset and measure the runtime for each model. Prediction
with MLMET is straightforward, due to its multi-label clas-
sifier nature. In the case of LITE, it is necessary to encode
each input-type pair. Prediction with our approach involves
encoding all inputs and then feeding them along with each pre-
encoded type into the cross-attention classification head, then
comparing each probability against the pre-defined threshold.

The extrapolated runtimes for training and prediction on
the validation set are shown in Table X. For training, we
observe that the training of MLMET takes considerably longer

3https://github.com/HKUST-KnowComp/MLMET

https://github.com/HKUST-KnowComp/MLMET


TABLE IX
EXEMPLARY PREDICTIONS OF OUR MODEL, MLMET AND LITE. TRUE POSITIVES ARE MARKED IN BOLD.

Input Labels Prediction

E1 In practice this conviction means that if
the journalist continues his critical line in
his publications, he will probably end up
behind bars”, said Adil Soz.

person, adult, investiga-
tor, journalist, male, pro-
fessional, reporter, writer,
communicator

DECENT:
person, adult, journalist, male, reporter,
writer, criminal
MLMET:
person, journalist, male, reporter, writer,
criminal, man
LITE:
person, adult, journalist, reporter, writer,
criminal, defendant, convict

E2 The Thomas Viaduct, located over
Levering Avenue at the entrance to
the Patapsco Valley State Park, is
the oldest stone curved bridge in the
world.

object, bridge, structure,
construction

DECENT:
object, bridge, structure, construction
MLMET:
object, bridge, structure, construction
LITE:
object, bridge, structure

E3 It urged Americans to maintain a low profile
and be alert between Aug. 11 and Aug. 16.

organization, government,
administration

DECENT:
organization
MLMET:
organization, group, agency, report
LITE:
organization, government, administra-
tion, authority, document, message, report

TABLE X
TIME NEEDED FOR MODEL TRAINING AND PREDICTION

MLMET LITE DECENT

Training Time 166h† 15h 4.5h
Prediction Time ‡ 1.6s 3h 84s

Total⋆ 167h 215h 6h
†33h with existing weak labels
‡for a single iteration over the validation set
⋆assuming validation is performed every 2% of train-

ing progress.

compared to the other model. That is because MLMET is
trained on nearly 30M distantly supervised samples. This im-
pacts both the pre-processing of those automatically generated
labels, and the length of the different training iterations. Due
to its multi-label classification nature, all the entity types
need to go through the model during training. Additionally,
there are multiple stages for training the model with different
datasets. On the other hand, training LITE is faster than
training MLMET. LITE can generalize from just a portion
of entity types to the whole type ontology by making use
of the label semantics, NLI, and label dependencies. Finally,
DECENT is the fastest in training time, due to the simplicity of
the model, and the label generalization benefits of using PLMs.
Another advantage of DECENT is the negative oversampling,
allowing the model to see more samples in less iterations.

In terms of prediction runtime, the disadvantages of LITE
can be clearly noted, resulting from the pair-wise input-type
encoding using a transformer architecture. MLMET has the
best performance, due to the simpler encoding of the inputs
compared to the others. Lastly, our model is significantly

slower than MLMET, as a result of the more complex trans-
former encoder. But compared with LITE, we have a 131x
runtime performance gain.

In general, if we consider both, training and prediction
runtimes, DECENT is more efficient than the other evaluated
approaches. Assuming a full training of the models using the
UFET dataset, with regular validation steps, we see that our
approach can be trained at least 25x faster than MLMET and
LITE.

V. CONCLUSION

In this work, we presented DECENT, a model for the
ultrafine named entity typing task, which is efficient in training
and prediction runtime. In our model design, we decouple
the encoding of input and the entity type label and thereby
circumvent the encoding of every input-label combination with
a pretrained language model. We defer the combination of
input and type labels to a designated cross-attention clas-
sification head. This classification head allows us to query
the input for a specific label without fully encoding them
with a pretrained language model. Our study shows that
this approach is 130 times faster than the state-of-the-art
model LITE [10] while maintaining competitiveness regarding
prediction performance.

The model design also allows us to perform semantic typing
and classify entity types not seen during training. In addition,
the architecture facilitates the oversampling of input types
during training. We can sample more type labels from the
ample label space for a given input and speed up the training
process. Specifically, our model can be trained significantly
faster than state-of-the-art approaches.

Although we present the benefits of DECENT, with the eval-
uation setup of the UFET dataset, there are some limitations of



the model worth mentioning. First, the hierarchical structure of
the type ontology is not directly employed. Other models like
LITE make use of such information. Also, our model depends
on the representations computed with a transformer model,
thus depending on its ability to encode a vocabulary. Models
like BERT [20], define a fixed token vocabulary, potentially
limiting the ability to represent all the words of a language.
That might impact particularly the encoding of entity types in
domain-specific settings with specialized names. As discussed
in subsection IV-A, in scenarios where the amount of entity
types is reduced and data and run-time efficiency are not
critical, the benefits of our approach are less prominent.

For future work, we would like to understand under which
circumstances models are confident enough to perform a
zero-shot prediction and include this knowledge into a new
approach. In this context, we will also experiment with the
success of transferring approaches between different datasets
and across different domains [28], [29]. Furthermore, we
would like to investigate model biases during named entity
typing and ways to mitigate them, extending the work of [30].
Lastly, we think contextualized entity types yield an exciting
opportunity for future research, e.g., the entity type director
can have multiple meanings. Combining the entity type with
different definitions [31], [32] or providing an example of
the type’s usage should allow a pretrained language model
to produce embeddings of higher quality.
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