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ABSTRACT
Knowledge graphs (KGs) provide structured representation of data
in the form of relations between different entities. The semantics of
relations between words and entities are often ambiguous, where
it is common to find polysemous relations that represent multi-
ple semantics based on the context. This ambiguity in relation
semantics also proliferates KG triples. While the guidance from
custom-designed ontologies addresses this issue to some extent, our
analysis shows that the heterogeneity and complexity of real-world
data still results in substantial relation polysemy within popular
KGs. The correct semantic interpretation of KG relations is neces-
sary for many downstream applications such as entity classification
and question answering. We present the problem of fine-grained
relation discovery and a data-driven method towards this task that
leverages the vector representations of the knowledge graph en-
tities and relations available from relational learning models. We
show that by performing clustering over these vectors, our method
is able to not only identify the polysemous relations in knowledge
graphs, but also discover the different semantics associated with
them. Extensive empirical evaluation shows that fine-grained re-
lations discovered by the proposed approach lead to substantial
improvement in the semantics in the Yago and NELL datasets, as
compared to baselines. Additional insights from qualitative analy-
ses convey that fine-grained relation discovery is an important yet
complex task, especially in the presence of complex ontologies and
noisy data.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; • Information systems → Information retrieval;
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1 INTRODUCTION
Knowledge graphs such as Yago [20], NELL [22] and DBpedia [18]
are widely used for systematic representation of real-world data in
the form of ⟨𝑠𝑢𝑏 𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏 𝑗𝑒𝑐𝑡⟩ triples. Here, subject and
object are chosen from a set of entities, while the predicate that links
the entities to each other belongs to a set of relations. In textual
data, the relations are often polysemous by nature, i.e., they exhibit
distinct meanings in different contexts. For example, the relation
‘part of ’ has different semantics in ‘..Sahara is part of Africa’ and
‘finger part of hand’. As the triples in KGs are derived from and
represent factual information from such texts, ambiguity from texts
often makes it way into the KG triples as well. Specifically, the
KG relations may represent multiple meanings depending on the
context, which is defined by the types of the entities being connected
by the relations in the case of KG triples.

Relation polysemy in KGs is a particularly important issue due to
the widespread application of KGs in several downstream tasks such
as search, question answering and reasoning where semantics play
a crucial role. However, it has received surprisingly little attention
until now. In order to gauge the magnitude of the issue in popular
KGs, we analysed the relations in the Yago3 [20] dataset in terms
of the number of unique entity type pairs that are connected by
a single relation (in the KG triples) without any further semantic
specialization. The results are plotted in Figure 1. It can be seen
that for a majority of the relations, the triples in which they occur
contain subject and object entities belonging to various entity types.
Among these, many relations such as 𝑜𝑤𝑛𝑠 and 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 exhibit very
high plurality of entity types which indicates that they are quite
generic with regards to their meaning. Similar insights were also
derived from the NELL dataset. Table 1 shows some examples of
the different entity types associated with relations from these KGs.

In this work, we advocate that for such relations that are associ-
ated with a number of different entity type pairs that are semanti-
cally distant from one another, it would be prudent to replace them
with sub-relations that have a more distinct meaning according
to the context. The exact meanings of the sub-relations could be
clearly defined based on the distinct types of the associated enti-
ties. Indeed, this underlying idea is derived from the task of word
sense disambiguation in Linguistics, as advocated by Firth : ‘a word
is characterized by the company it keeps’ [8]. In the context of
KGs, one could say ‘a relation is characterized by the entity types it
connects’.
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Figure 1: The number of unique type pairs associated with
different relations in Yago

However, it is to be emphasized that while being intuitive, this
task is extremely tricky due to a wide variance in the types of
the entities in large KGs. Let us consider the relation created from
the Yago dataset (Table 1). While some types such as television
and movie for the created relation are semantically similar to one
another, other types are quite different, for instance company and
writer. If the relation is trivially replaced by multiple relations based
on the different entity type pairs in a straightforward manner, with-
out taking the similarity as well as frequency of these types into
account, the resultant sub-relations would end up being remarkably
similar to each other, thus leading to a high degree of duplication.
Due to the complex hierarchy of classes (entity types)1 in the un-
derlying ontology, entity types often belong to different granularity
levels [12], leading to a broad range of semantic similarity between
them. The frequency with which a relation connects different type
pairs is also widely variable. It is, therefore, a non-trivial task to
decide how to define the sub-relations based on the semantics of
the entity types associated with a relation, both in terms of the
number of sub-relations as well the subset of entity types that the
sub-relations should encompass.

Relational learning models have recently shown a lot of promise
for the task of knowledge graph completion and refinement. In
essence, these models aim to encapsulate the structure of the KG, as
well as the latent semantics of entities and relations, by embedding
them in low-dimensional vector space. Previous works have shown
that the vector representations obtained from these models can
be used for semantic analysis in KGs [14, 15]. We extend this idea
further by demonstrating that these vectors also capture relation
semantics such that they can be leveraged to successfully identify
polysemous relations. The proposed method uses these vectors for
finding representative clusters in the latent space and derive the
fine-grained semantics from polysemous relations in an effective
manner. To the best of authors’ knowledge, the task of fine-grained
relation semantics has not been systematically explored in the
context of KG relations. This work establishes several feature-based
baselines and shows the promise of embedding-based solution that
outperforms a previous related non-embedding approach in the
context of open relation extraction [21].

1The terms class and entity type will be used interchangeably in the rest of the text.

Table 1: Examples of Multiple Semantics of Relations

Yago created NELL agentBelongsTo-
Organization

(writer, movie) (politician, politicalparty)
(player, movie) (country, sportsleague)
(artist, movie) (sportsteam, sportsleague)

(officeholder, movie) (coach, sportsleague)
(writer, fictional_character) (person, charactertrait)
(artist, computer_game) (televisionstation, company)

(artist, medium)
(writer, television)

(company, computer_game)

The main contributions of this paper are following: (1) We
formally define the task of fine-grained relation discovery which
refers to the disambiguation of polysemous relations in knowledge
graphs and motivate its importance and benefits. (2) We propose a
data-driven and scalable method FineGReS (Fine-Grained Relation
Semantics) to identify multiple sub-relations that capture the dif-
ferent underlying semantics of the relations via clustering in the
latent space. (3) We present detailed discussion and empirical eval-
uation on two large KG datasets (Yago and NELL) that illustrates
the effectiveness of the approach as compared to several baselines
for downstream applications.2

2 FINE-GRAINED RELATION SEMANTICS
Relation polysemy is quite common in knowledge graphs due to
two primary reasons. Firstly, the schema for most large scale KGs
that are in use today have been constructed through manual or
semi-automated efforts, where the relations between the entities
are curated from text. Relations are often abstracted in such KGs
for simplification and avoidance of redundancies. This may result
in cases where a single relation serves as a general notion between
various different types of KG entities and has more than one seman-
tic meaning associated with it. However, due to the diversity of the
kinds of associations between the entities, the abstract relations
may not be sufficiently representative of the underlying semantics
that they are supposed to capture. In addition to this, the fact that
these KGs represent real-world facts that are expressed in natural
language having inherent ambiguities, contributes further to the
relation polysemy in KGs. For instance, the relation phrase ‘part of ’
represents varied semantics based on its context of biology (finger
part of hand), organizations (Google part of Alphabet), geography
(Amazon part of South America) and many others. Even KGs that
have a large number of different relations can suffer from ambigu-
ous relations, for instance DBpedia has around 300 relations that
are relatively well-defined in terms of their entity types, however
there exist relations such as award and partOf that still convey
ambiguity. The determination of fine-grained relation semantics
in relational data is an important task which can bring substantial
benefits to a wide range of use cases as discussed further in this
section.

2The code and data is available at https://github.com/nitishajain/FineGReS.
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The task of relation extraction is essential for information ex-
traction from texts and it continues to be challenging due to the
varied semantics of the evolving language. For identifying pat-
terns and extracting relation mentions from text, unsupervised
techniques typically rely on the predefined types of relation argu-
ments [5, 11, 30]. Given an existing KG and schema, with the goal
to extract facts for a particular relation from a new corpus of text, a
distant supervision approach will leverage relation patterns based
on the types of entities over the text. As an example, if the relation
created has been established between a painter and artwork, then
the identification of this relation can be aided by specific patterns
in text. However, if the relation created is generically defined be-
tween any person entity and any work entity, then the resulting
text patterns for this relation will be noisy and varied, therefore
may fail to identify the correct fact triples from text. Identifying
the different meanings of a relation in different contexts can help
with defining concrete patterns for extraction of relation phrases.

This is also useful for identification and classification of enti-
ties by their types in a knowledge graph. E.g. the target entity of
the relation directed is likely to be of type movie or play. If the
relations have a wider semantic range, the type of entities cannot
be identified at a fine-grained level. For instance, it might be only
possible to identify the entity type as work and not specifically
movie, which could adversely affect the performance of further ap-
plications such as entity linking and question answering. Numerous
question answering systems that use knowledge graphs as back-end
data repositories (KBQA) [6] rely on the type information of the
entities to narrow down the search space for the correct answers.
Thus, distinct relation semantics in terms of the types of connected
entities are essential for supporting QA applications over KGs.

It is to be noted that the discovery of fine-grained relation seman-
tics is important in the context of KG refinement, not being merely
limited to already existing datasets, but also in general. KGs usually
evolve over time and often in a fragmented fashion, where new
facts might be added to a KG that do not strictly conform or can be
correctly encapsulated by the existing ontology. Addition of such
new facts might easily lead to noisy and abstracted semantics in pre-
viously well-defined KG relations. Relation disambiguation would
therefore play a important role in identifying new fine-grained sub-
relations with precise semantics. The proposed FineGReS method
is generally applicable and could prove to be incredibly useful in
all the above scenarios. Finally, it is also important to note that the
approach of determining semantic sub-relations in existing KGs and
their ontology can be applied to the very important open challenge
of constructing domain-specific KGs from new corpora [16]. By way
of adding novel relations to already existing ontologies, this work
shows the potential and promise of aiding ontology matching [25]
for supporting new domains.

3 RELATEDWORK
Relation Semantics. While the idea of learning embeddings for

words by considering their multiple contextual semantics is not
new [32], the contextual semantics of existing relations in knowl-
edge graphs have not been studied as much. This is due to the
fact that most KGs are populated on the basis of a pre-defined on-
tology where the relations and their semantics have already been

fixed [20, 22]. Yet, issues with the relations in such KGs still persist.
Kalo et al. [15] have previously presented a detailed analysis on
finding and unifying synonymous relations that are found in most
large KGs to reduce the number of relations for the sake of better se-
mantics. Similar in spirit, we bring attention to the complementary
problem statement of identifying the relations in KGs that exhibit
more than one meaning based on different contexts and claim that
they should be represented by multiple sub-relations with more
precise semantics.

In other related work, [14] explores the entailment between
relations, e.g. the relation creator entails author or developer in
the sense that creator subsumes the other relations. Similar to our
work, the authors leverage the entity type information to solve
the multi-classification problem of assigning the child relations to
the parent ones. Our problem statement of fine-grained relation
refinement is significantly more challenging and impactful in the
sense that it involves the identification of novel sub-relations in an
unsupervised manner.

KG Embeddings. In the context of relational learning models, few
works have looked into KG relations for the goal of learning better
embeddings. For instance, in [19] the authors advocated the need
for learning multiple relation vectors to capture the fine-grained
semantics, however this study was limited in scope and lacked any
consideration for complex entity type hierarchies in KGs. In [39],
the authors create a 3-level relation hierarchy which combines
similar relations as well splits relations into sub-relations, in order
to improve the embeddings for relations. The proposed approach
is quite rigid and opaque in terms of the actual semantics of the
relations obtained from it. In fact, the number of clusters was pre-
defined for all relations across a dataset, in contrast to the FineGReS
method that can determine an optimal number of clusters sepa-
rately for each relation based on the associated entity types. The
diverse semantics of relations was also considered by [13] where
the authors proposed two different vectors for the relations as well
as entities, to capture their meanings and connections with each
other. Similarly, in [35] the authors discussed the generation of mul-
tiple translation components of relations based on their semantics
with the help of a bayesian non-parametric infinite mixture model.
However, they do not perform a systematic analysis of the relations
semantics and a qualitative evaluation of their approach is missing.

In general, previous works have only discussed the semantics
of KG relations in the context of KG embeddings with the primary
goal of training better models that can show improvement on the
link prediction (or knowledge graph completion) task. However,
this work explicitly pays attention to the identification of poly-
semous relations in the KGs and discovery of the latent relation
semantics with the overall goal of knowledge graph refinement and
improvement of the quality of the relations in underlying ontology.
Relational models have been leveraged as effective and promis-
ing enablers for this task instead of being the focal topic of this
work. More importantly, none of the previous works have explored
the challenges of deriving fine-grained relations from an existing
polysemous relation in the presence of complex semantic relation-
ships between the associated entity types, which is quite common
for real-world datasets. We present a systematic and data-driven
method for this task.
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Relation Extraction and Open IE. While this work is concerned
with relations between entities, it is important to distinguish it from
the task of relation extraction from texts. There are many previous
approaches that identify relationships between entities in texts and
perform clustering on phrases to derive the relations [2, 23, 28,
33], such approaches aim to identify relation patterns that exactly
conform to a singular semantic intent. In stark contrast, we aim
to find the different semantic intents that may be already present
in a single KG relation. Moreover, relation extraction techniques
heavily rely on the contextual cues available in the text, whereas
the only context available with regard to the relations in KGs is the
associated entities and their types. As such, these approaches are
indeed not comparable to our work.

Research pertaining to the processing of entity and relation
phrases in the context of Open Information Extraction is more
relatable to our goals. Previous approaches on the canonicaliza-
tion of relation phrases (that are present in Open IE triples) have
attempted to establish the semantics of the relations by perform-
ing clustering over the phrases [9, 31]. Among such approaches,
the closest to ours is the work by Min et al. [21] that discusses
the ambiguity in the meanings of relation phrases present in
Open IE triples such as ⟨𝐸𝑢𝑟𝑜, 𝑏𝑒 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 𝑜 𝑓 ,𝐺𝑒𝑟𝑚𝑎𝑛𝑦⟩ and
⟨𝑎𝑢𝑡ℎ𝑜𝑟𝑠ℎ𝑖𝑝, 𝑏𝑒 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑦 𝑜 𝑓 , 𝑠𝑐𝑖𝑒𝑛𝑐𝑒⟩. While this approach con-
cerns with disambiguation of relation phrases in texts rather than
relations in KGs, we still consider this work as a baseline approach
that does not employ embeddings for deriving the semantics and
compare our embeddings-based approach against it.

4 PRELIMINARIES
Knowledge Graph. For a knowledge graph G, the set of unique

relations is denoted as R. A KG fact (or triple) 𝐹 = ⟨𝑒ℎ, 𝑟 , 𝑒𝑡 ⟩ con-
sists of the head entity 𝑒ℎ , the tail entity 𝑒𝑡 and the relation 𝑟 that
connects them, where 𝑒ℎ and 𝑒𝑡 belong to the set of entities E. A
given relation 𝑟 ∈ R appears in several triples, forming a subset G𝑟

of G.

Entity Types. The semantic types or classes of the entities are
defined in an ontology associated with a KG that defines its schema.
The entities 𝑒 ∈ E are connected with their types by ontological
triples such as ⟨𝑒, 𝑡𝑦𝑝𝑒𝑂 𝑓 , 𝑡⟩, where 𝑡 ∈ 𝑇 , the set of entity types
in the ontology. We define a type pair as the tuple ⟨𝑡ℎ, 𝑡𝑡 ⟩ where
⟨𝑒ℎ, 𝑡𝑦𝑝𝑒𝑂 𝑓 , 𝑡ℎ⟩ and ⟨𝑒𝑡 , 𝑡𝑦𝑝𝑒𝑂 𝑓 , 𝑡𝑡 ⟩. A set of unique type pairs for
a given relation 𝑟 and corresponding G𝑟 is denoted as P𝑟 . Thus
we have,P𝑟 = {⟨𝑡ℎ, 𝑡𝑡 ⟩|⟨𝑒ℎ, 𝑡𝑦𝑝𝑒𝑂 𝑓 , 𝑡ℎ⟩, ⟨𝑒𝑡 , 𝑡𝑦𝑝𝑒𝑂 𝑓 , 𝑡𝑡 ⟩, ⟨𝑒ℎ, 𝑟 , 𝑒𝑡 ⟩ ∈
G𝑟 }. The total number of such unique type pairs for relation 𝑟 is
denoted by L𝑟 .

KG Embeddings. Knowledge graph embeddings have gained im-
mense popularity and success for representation learning of re-
lational data. They provide an efficient way to capture latent se-
mantics of the entities and relations in KGs. The main advantage
of these techniques is that they enable easy manipulation of KG
components when represented as vectors in low dimensional space.
E.g. in TransE [3], for a triple ⟨ℎ, 𝑟, 𝑡⟩ the vectors h, r and t satisfy
the relation h + r = t or r = t - h. In this work, we leverage the
representational abilities of the embeddings to obtain the semantic
vectors for relations expressed in terms of the entities associated

with them. For vectors 𝒆𝒉 , r and 𝒆𝒕 as obtained from an embedding
corresponding to a KG triple ⟨𝑒ℎ, 𝑟 , 𝑒𝑡 ⟩, we define a vector 𝚫𝒓 which
is a function of 𝒆𝒉 and 𝒆𝒕 . Further, every 𝚫𝒓 vector is mapped to a
type pair ⟨𝑡ℎ, 𝑡𝑡 ⟩ corresponding to the entities 𝑒ℎ , 𝑒𝑡 .

Problem Definition. Given a relation 𝑟 ∈ R in G, the set of vec-
tors {𝚫𝒓1𝚫𝒓2 ...𝚫𝒓G𝒓

} for the graph G𝑟 and the set of type pairs
for this relation as denoted by P𝑟 , the goal is to find an optimal
configuration of clusters C𝑜𝑝𝑡 = {C1, C2 ...C𝑁 }, where the 𝚫𝒓𝒊 vec-
tors are uniquely distributed among the clusters i.e. each 𝚫𝒓𝒊 ∈
C𝑗 , 𝑖 = 1...|G𝑟 |, 𝑗 = 1...𝑁 , s.t. an objective function F (C𝑜𝑝𝑡 ) is
maximized. Further, each cluster C𝑗 represents the semantic union
of a subset of type pairs from P𝑟 such that ∃ 𝚫𝒓𝒊 ∈ C𝑗 where 𝚫𝒓𝒊 is
mapped to one of the type pairs in this subset. Thus, the optimal
configuration of clusters corresponds to the optimal number of
sub-relations and their fine-grained semantics as defined by the
type pairs that they represent. The proposed FineGReS method can
derive this optimal configuration for the relations of a KG.

5 FineGReS
In this section, we describe in detail the design and implementation
details of the proposed FineGReS method for a relation that can be
easily scaled to any number of relations in the dataset.

5.1 Semantic Mapping for Facts
For every unique relation 𝑟 in G, we firstly find the subset of triples
G𝑟 where 𝑟 appears. To understand the semantics of the entities
associated with 𝑟 , the entities are mapped to their corresponding
classes as defined in the underlying ontology. By doing so, we obtain
a list of entity type pairs ⟨𝑡ℎ, 𝑡𝑡 ⟩ for the relation. Note that several
entities in G𝑟 might map to the same type and therefore, a single
type pair tuple would be obtained several times. Therefore in the
next step, we identify the unique type pairs for a relation 𝑟 as the
set P3. At this stage, every triple in G𝑟 is associated with a type pair
⟨𝑡ℎ, 𝑡𝑡 ⟩ ∈ P that represents the semantics of this triple. For exam-
ple, for the 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 relation, a triple ⟨𝐷𝑎𝑉𝑖𝑛𝑐𝑖, 𝑐𝑟𝑒𝑎𝑡𝑒𝑑,𝑀𝑜𝑛𝑎𝐿𝑖𝑠𝑎⟩
would be mapped to ⟨𝑎𝑟𝑡𝑖𝑠𝑡, 𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔⟩ as per the types of the head
and tail entities.

5.2 Vector Representations for Relations
For representing the semantics of 𝑟 in terms of the associated en-
tities, we leverage pre-trained KG embeddings. As proposed in
previous work [14], we derive a representation for the relation
from 𝒆𝒉 and 𝒆𝒕 vectors corresponding to every triple in G𝑟 . In this
way, for every relation 𝑟 , a set of vectors 𝚫𝒓 is obtained from the
KG embeddings, in addition to the actual r vector that the embed-
ding already provides. These 𝚫𝒓 vectors are then mapped to the
corresponding type pairs (according to the types of the underlying
entities). With this, each unique type pair is, in turn, mapped to
and represented by a subset of 𝚫𝒓 vectors. The 𝚫𝒓 vectors encode
the combined information conveyed by the head and tail entity
types and represent the relationship between the entities, thus en-
capsulating the latent semantics of the relations in different triples.
The 𝚫𝒓 vectors serve as the data points for the clustering (with the
associated type pairs being their labels).

3We denote P𝑟 as P when the relation 𝑟 is clear from the context.
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Relation Semantics. While it is believed that KG embeddings are
able to capture relation similarity in the embedding space, i.e., rela-
tions having similar semantics occur close together in the vector
space [7, 15], we found that relations having multiple semantics
(based on the context of their entities) are, in fact, not represented
well in the vector space. For polysemous relations, the vectors ob-
tained for a single relation (from the different facts that it appears
in) form separate clusters in the vector space that do not overlap
with the actual relation vector r obtained from the embeddings.
This happens due to the fact that multiple entity pairs connected
by the same relation are semantically different from one another.
Figure 2 shows examples from the NELL and Yago datasets where
this behaviour of the embedding vectors for relations is clearly
visible. We leverage this semantically-aware behaviour of the em-
bedding vectors to determine meaningful clusters of 𝚫𝒓 vectors
that represent the distinct latent semantics exhibited by different
entity type pairs connected by the same relation, as described next.

5.3 Clustering for Fine-grained Semantics
For each relation 𝑟 , the total number of unique type pairs L = |P |
is theoretically the maximum number of possible semantic sub-
relations or clusters that could be obtained for 𝑟 . This will create
a different sub-relation for every different type pair. However, in
practice, it is rare that all the type pairs would have completely dif-
ferent semantics. For example, the 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 relation in Yago has type
pairs ⟨𝑎𝑟𝑡𝑖𝑠𝑡, 𝑝𝑎𝑖𝑛𝑡𝑖𝑛𝑔⟩ and ⟨𝑎𝑟𝑡𝑖𝑠𝑡,𝑚𝑢𝑠𝑖𝑐⟩ that have the same head
entity type, while the type pair ⟨𝑜𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑠𝑜 𝑓 𝑡𝑤𝑎𝑟𝑒⟩ conveys
quite a different meaning. While a single relation is not sufficient
to be representative of the semantics of all triples that it appears in,
at the same time, a naive assignment of sub-relations pertaining to
all unique type pairs would also be inefficient and lead to a large
number of unnecessary sub-relations.

The FineGReS method aims to find an optimal number and com-
position of clusters C𝑜𝑝𝑡 for the type pairs that can convey distinct
semantics of the relations based on the data, by combining similar
type pairs while separating the dissimilar ones. Each of the clus-
ters having one or more than one semantically similar type pairs
represents a potential sub-relation. In order to obtain this configu-
ration, various compositions of the clusters need to be analysed for
optimality. For this, clustering is performed in an iterative manner
with a predefined number of clusters and combinations of type
pairs within each cluster for the iterations. Since it is not feasible
or practical to consider an exhaustive number of possible clusters,
FineGReS leverages the semantic similarity of type pairs to narrow
down the search space for obtaining the optimal clusters. First, the
vector representations for the types are derived. Subsequently, the
similarity scores between all combinations of the unique type pairs
(𝑡ℎ𝑖 , 𝑡𝑡𝑖 ), (𝑡ℎ 𝑗

, 𝑡𝑡 𝑗 ) are obtained by calculating the similarity scores
between the vectors corresponding to the head entity types 𝑡ℎ𝑖 and
𝑡ℎ 𝑗

as well as the tail entity types 𝑡𝑡𝑖 and 𝑡𝑡 𝑗 and then taking their
mean value.

Iterative Clustering. The iterative clustering begins with L clus-
ters, with each cluster corresponding to one type pair for the rela-
tion in the first iteration. At this point, the cluster labels for the data
points (𝚫𝒓 vectors) are denoted by individual type pairs directly
and serve as the ‘ground truth’ for evaluation. Next, the similarity

(a) owns relation in Yago

(b) agentcontrols relation in NELL

Figure 2: Visualization (after PCA reduction) of relation vec-
tors with associated type pairs

scores of all the type pair combinations are calculated, and the two
type pairs that are most similar are considered as candidate pairs to
be merged together and placed in a single cluster for the second iter-
ation. To generate the cluster labels, the data points corresponding
to the candidate type pairs are assigned the same distinct label (that
could be generated e.g. by combining the individual label names).
The number of clusters is given as L - 1 during the second itera-
tion of clustering, and the cluster labels consist of L - 2 original
type pairs and the one merged type pair. If two combinations of
type pairs have the same similarity score in any iteration, ties are
broken arbitrarily. This process of selecting the most similar type
pairs as candidates for merging in the next iteration to reduce the
number of clusters is repeated until all type pairs have been grad-
ually merged back together in a single cluster. In some iterations,
the most similar type pairs could be already in the same cluster,
so the next most similar pairs are considered until candidates to
merge are found. This ensures that the number of clusters always
shrinks in subsequent iterations until eventually all clusters are
merged back and the algorithm converges. At each iteration, the
quality of the clusters is calculated (as detailed in 6.2) and this is
regarded as the function F (C𝑜𝑝𝑡 ). The results from the iteration
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having the maximum value of this function is chosen as the optimal
configuration of clusters C𝑜𝑝𝑡 . The complexity of this algorithm for
a relation is proportional to the number of unique type pairs in the
dataset and in practice, the run time of iterative clustering process
ranges between a few seconds to a few minutes per relation. It is
to be noted that while this approach discovers the sub-relations,
their labeling is a separate task on its own. In this work, we simply
use the type pairs to derive representative labels, e.g. a sub-relation
of created that connects company with computer_game could be
named as created-company-computer_game and so on. However, a
proper naming scheme for these relations is concerned with the
task of ontology design and is out of the scope of the current work.

6 EVALUATION
We evaluate the effectiveness of our proposed method by perform-
ing a series of experiments with several feature-based baselines and
a non-embedding baseline approach, as well as variations of the
FineGReS technique with different embedding models and cluster-
ing techniques. In particular, the experiments will help to answer
the following research questions —
Q1. Does FineGReS approach find meaningful and useful fine-
grained relation semantics as compared to baselines? (Section 6.2)
Q2. Do the sub-relations really reflect what the users need in terms
of semantics? (Section 6.3)
Q3. Do fine-grained relation semantics benefit a KG-based applica-
tion such as entity classification? (Section 6.4)
The experiments are also supported by a qualitative analysis and
detailed discussion of the results.

6.1 Experimental Setup

Datasets. We prepared datasets derived from Yago3 and NELL-995
knowledge graphs for the experiments. For the Yago3 dataset, the
entity types (concepts) of all entities were extracted from the accom-
panying ontology and ranked in terms of frequency. Yago ontology
is composed of concepts that are derived from Wordnet as well as
from Wikipedia categories (Wikicat). Since the Wikicat concepts
are often fine-grained sub-classes of Wordnet concepts, we only
consider Wordnet concepts for obtaining non-overlapping clean set
of concepts. We considered the top 53 frequent concepts for creating
our dataset as the frequencies dropped considerably thereafter. The
accounted concepts each had atleast 10,000 entities associated with
them. Thereafter, we extracted the facts triples from Yago3 that
were comprised of subject(head) and object(tail) entities associated
with the chosen concepts. This resulted in a set of 1,492,078 triples,
which were augmented with the corresponding types of entities.
The final dataset consists of 31 relations and 917,325 unique entities.
Note that only the data points from the relations having multiple
type pairs (after filtering out the ones having too few triples to
avoid errors from incorrect entity type mapping) associated with
them were considered for clustering.

A similar process was followed for the NELL-995 dataset. In this
dataset, the type information is embedded with the entities and
thus could be directly extracted from the data triples. Similar to
the above heuristics, the types of the entities were restricted to the
most frequent types (top 41) found in the dataset (with the less

frequent types being replaced by their more frequent supertypes
when found in the NELL ontology4). The numerical entities were
removed from the dataset since they did not have an associated
type. The final dataset consists of a total of 200 relations and 75,492
entities along with their corresponding types, and 154,213 triples
in total.

Finding Type Similarity. The process of iterative clustering is
guided by the semantic similarity of the different type pairs for a
given relation and therefore, obtaining the representations for the
entity types is an important step in the FineGReS method. Here, we
describe two different strategies to derive these representations —
concept-based embeddings and entity-based embeddings.

Concept-based Type Representations. In order to directly obtain
vector representations of the entity types, we use the pre-trained
ConVec embeddings [29] that are publicly available.5 These 300-
dimensional embeddings were obtained by training over a dataset
of 1.5 million words including the Wikipedia concepts and thus
represent the semantics for the entity types quite well. While the
ConVec embeddings work well in most cases, sometimes the entity
types are multi-word phrases, especially in the case of NELL dataset.
In addition, the NELL ontology is quite large with a much wider
vocabulary due to the continuous learning paradigm of NELL. As
such, in order to obtain the vector representations that are not
found in ConVec and to calculate the similarity scores between
the entity types (including both words and phrases), we leveraged
the pre-trained Sentence-BERT [27] models from the HuggingFace
library [34].

Entity-based Type Representations. The entities associated with
the types can also provide meaningful representations for the entity
types. For each type, we first obtain the vectors for the correspond-
ing entities fromWikipedia2Vec tool [36]. Since the Wikipedia2Vec
embeddings were derived from the mentions of the entities on the
entire Wikipedia corpus, they effectively encapsulate the textual
semantics of the entities. The vector representation for the entity
type was then obtained by taking the average of the entity embed-
ding vectors. Once the type vectors were obtained from either of
the above strategies, the cosine similarity measure was used for
calculating the similarity matrix between the entity types pairs.6

Knowledge Graph Embeddings.We perform our experiments
on the following widely used KG embedding models — TransE [3]
and DistMult [37]. These models are chosen to serve as prominent
examples of embeddings using translation distance and semantic
matching techniques respectively. We use the model implementa-
tions from the LibKGE library [4] for Yago3-10 dataset and from
the OpenKE library [10] for NELL-995 dataset.

Clustering Techniques. Several different clustering algorithms
were employed to obtain the clusters in the vector space — KMeans
clustering (KMC), Optics (OPC) and Hierarchical Agglomerative
clustering (HAC).

4Available at - http://rtw.ml.cmu.edu/rtw/resources
5https://github.com/ehsansherkat/ConVec
6We also tried the euclidean similarity measure and it shows very similar results. For
the rest of the paper, we only refer to results from the cosine similarity scores.
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Table 2: Performance of FineGReS clusters for TransE and DistMult embedding models with different clustering techniques in
comparison with feature-based baselines (best F1 values in bold, best for a model on each dataset underlined).

TransE DistMult
KMC HAC OPC KMC HAC OPC

Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

Yago

subject .359 .258 .358 .242 .0013 .0001 .426 .260 .434 .258 .0007 .00003
object .213 .167 .187 .112 .0009 0 .248 .136 .339 .167 .0007 .00007
pair .153 .095 .162 .064 .0012 .0002 .140 .266 .058 .095 .0007 .00006
𝐹𝑖𝑛𝑒𝐺𝑟𝑒𝑆𝑒𝑛𝑡𝑖𝑡𝑦 .472 .337 .527 .339 .0014 .0002 .519 .321 .532 .337 .0008 .00008
𝐹𝑖𝑛𝑒𝐺𝑟𝑒𝑆𝑐𝑜𝑛𝑐𝑒𝑝𝑡 .537 .357 .525 .329 .0011 .0002 .597 .376 .582 .347 .0008 .00008

NELL

subject .217 .125 .256 .159 .006 .0026 .281 .155 .255 .151 .004 .0009
object .302 .209 .286 .176 .006 .0017 .291 .204 .323 .204 .005 .0006
pair .128 .083 .132 .070 .005 .0033 .089 .051 .137 .079 .005 .0013
𝐹𝑖𝑛𝑒𝐺𝑟𝑒𝑆𝑒𝑛𝑡𝑖𝑡𝑦 .345 .178 .467 .210 .007 .0034 .686 .194 .454 .207 .006 .0014
𝐹𝑖𝑛𝑒𝐺𝑟𝑒𝑆𝑐𝑜𝑛𝑐𝑒𝑝𝑡 .576 .379 .711 .434 .008 .0039 .376 .387 .719 .431 .006 .0014

Table 3: Performance of FineGReS clusters in comparison
with the non-embedding baseline (best values in bold)

Yago NELL
Micro Macro Micro Macro

Baseline .439 .275 .442 .261
TransE .537 .357 .711 .434
DistMult .597 .376 .719 .431

Baselines. To the best of our knowledge, there is no existing re-
search that has leveraged knowledge graph embeddings to discover
fine-grained semantics of relations in large KGs. As such, we estab-
lish several baselines in this work for analysis and comparison of
our proposed approach as well as future works.

Feature-based Baselines. To derive sub-relations from a polyse-
mous relation in the KG, several simplistic configurations were
explored. The semantics can be driven by the entity types of solely
subject or object entities. The different type pairs can also be a
criteria for new sub-relations. Hence, we define the baselines as —
pair - Sub-relations obtained on the basis of every unique type pair
that is associated with a relation, this setting corresponds to the
maximum number of sub-relations.
subject - Sub-relations created by grouping the type pairs by sub-
ject entity types i.e. each sub-relation represents all type pairs
associated with a common subject type and different object types.
object - Similar to subject, but grouping instead by the object entity
types.

Non-embedding Baseline. Few previous works have discussed
the ambiguity in the meanings of relation phrases present in Open
IE triples [9, 21]. Particularly, in [21] the authors propose ‘Type A’
relations where the same relation phrase is associated with differ-
ent types of subject and object entities, hence denoting different
semantics. Such polysemous relation phrases are indeed identified
as distinct relations through a variant of the Hierarchical Agglom-
erative Clustering(HAC) technique. Note that this approach heavily

relies on the textual context of the entities and relations which is
missing in KG triples. Nevertheless, as this is the closest related
approach to our work, we consider it as a non-embedding baseline
that is purely text-driven. To best implement this baseline approach
from [21], the entity similarity was derived from text-driven entity
embeddings [36] instead of the KG embedding models (as done
in our approach). These text-driven embeddings encapsulate the
textual context as well as sentence-level lexical patterns available
in Wikipedia texts via word-based skip gram and anchor context
models. An entity similarity matrix (corresponding to the entity
similarity graph in [36]) was thus constructed from these entity em-
beddings and the clustering was performed based on the pairwise
similarity values from this matrix to obtain relations with distinct
semantics.

6.2 Evaluation of FineGReS Relation Semantics
Following previous works related to relation phrase clustering [9,
31], we employ micro and macro metrics to evaluate the quality of
the clustering in terms of precision, recall and F1. Table 2 reports
the weighted (as per the number of data points) F1 metrics for the
datasets obtained by the feature-based baselines and the FineGReS
method in the different settings of KG embeddings and cluster-
ing techniques. Note that 𝐹𝑖𝑛𝑒𝐺𝑟𝑒𝑆𝑐𝑜𝑛𝑐𝑒𝑝𝑡 and 𝐹𝑖𝑛𝑒𝐺𝑟𝑒𝑆𝑒𝑛𝑡𝑖𝑡𝑦 cor-
respond to the different variations of the FineGReS approach in
terms of obtaining type representations (refer to Section 6.1). Ad-
ditionally, we also compared the best performing setting of the
FineGReS method in case of DistMult and TransE models to the
non-embedding baseline and present the results in Table 3.

Observations. It can be seen that in all settings the clusters ob-
tained by the proposed FineGReS method outperform the base-
lines in terms of both micro and macro metrics on Yago and NELL
datasets. Clustering with kmeans and hierarchical agglomerative
techniques show better results in comparison with optics which
is a density-based clustering technique.7 Overall, the results pro-
vide strong evidence in support of the efficacy of our method for
finding optimal configurations of clusters for the relations, from
7This was also observed by previous work in the context of KG embeddings [12].
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Table 4: Examples of Fine-grained Sub-Relations

Dataset - Relation (Setting) Count FineGReS Sub-Relations

Yago - owns
(TransE-HAC) 3 {⟨𝑐𝑜𝑚𝑝𝑎𝑛𝑦, 𝑎𝑖𝑟𝑝𝑜𝑟𝑡⟩ ⟨𝑜𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑎𝑖𝑟𝑝𝑜𝑟𝑡⟩}, {⟨𝑠𝑜𝑣𝑒𝑟𝑒𝑖𝑔𝑛, 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔⟩},

{⟨𝑐𝑜𝑚𝑝𝑎𝑛𝑦, 𝑐𝑙𝑢𝑏⟩ ⟨𝑐𝑜𝑚𝑝𝑎𝑛𝑦, 𝑐𝑜𝑚𝑝𝑎𝑛𝑦⟩, ⟨𝑐𝑜𝑢𝑛𝑡𝑟𝑦, 𝑐𝑙𝑢𝑏⟩}

Yago - created
(TransE-OPC) 4

{⟨𝑎𝑟𝑡𝑖𝑠𝑡,𝑚𝑒𝑑𝑖𝑢𝑚⟩ ⟨𝑜 𝑓 𝑓 𝑖𝑐𝑒ℎ𝑜𝑙𝑑𝑒𝑟,𝑚𝑜𝑣𝑖𝑒⟩}, {⟨𝑤𝑟𝑖𝑡𝑒𝑟, 𝑓 𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 ⟩},
{⟨𝑤𝑟𝑖𝑡𝑒𝑟,𝑚𝑜𝑣𝑖𝑒⟩ ⟨𝑤𝑟𝑖𝑡𝑒𝑟, 𝑡𝑒𝑙𝑒𝑣𝑖𝑠𝑖𝑜𝑛⟩ ⟨𝑤𝑟𝑖𝑡𝑒𝑟, 𝑓 𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙_𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 ⟩ ⟨𝑎𝑟𝑡𝑖𝑠𝑡,𝑚𝑜𝑣𝑖𝑒⟩

⟨𝑎𝑟𝑡𝑖𝑠𝑡, 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟_𝑔𝑎𝑚𝑒⟩ ⟨𝑝𝑙𝑎𝑦𝑒𝑟,𝑚𝑜𝑣𝑖𝑒⟩}, {⟨𝑐𝑜𝑚𝑝𝑎𝑛𝑦, 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑟_𝑔𝑎𝑚𝑒⟩}

NELL-agentCompetesWith
(TransE-KMC) 5

{⟨𝑐𝑜𝑚𝑝𝑎𝑛𝑦, 𝑝𝑒𝑟𝑠𝑜𝑛⟩ ⟨𝑤𝑒𝑏𝑠𝑖𝑡𝑒, 𝑝𝑒𝑟𝑠𝑜𝑛⟩ ⟨𝑝𝑒𝑟𝑠𝑜𝑛, 𝑝𝑒𝑟𝑠𝑜𝑛⟩, ⟨𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑒𝑎𝑚, 𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑒𝑎𝑚⟩},
{⟨𝑝𝑒𝑟𝑠𝑜𝑛, 𝑐𝑜𝑚𝑝𝑎𝑛𝑦⟩, ⟨𝑝𝑒𝑟𝑠𝑜𝑛,𝑤𝑒𝑏𝑠𝑖𝑡𝑒⟩} {⟨𝑎𝑛𝑖𝑚𝑎𝑙, 𝑎𝑛𝑖𝑚𝑎𝑙⟩, ⟨𝑏𝑖𝑟𝑑, 𝑎𝑛𝑖𝑚𝑎𝑙⟩},

{⟨𝑏𝑎𝑛𝑘,𝑏𝑎𝑛𝑘⟩}, {⟨𝑚𝑎𝑚𝑚𝑎𝑙, 𝑝𝑜𝑙𝑖𝑡𝑖𝑐𝑠𝑖𝑠𝑠𝑢𝑒⟩}

NELL-subpartOfOrganization
(DistMult-KMC) 8

{⟨𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑒𝑎𝑚, 𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑒𝑎𝑚⟩ ⟨𝑠𝑡𝑎𝑡𝑒𝑜𝑟𝑝𝑟𝑜𝑣𝑖𝑛𝑐𝑒, 𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑒𝑎𝑚⟩ ⟨𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦, 𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑒𝑎𝑚⟩
⟨𝑐𝑖𝑡𝑦, 𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑒𝑎𝑚⟩ }, {⟨𝑜𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛, 𝑜𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛⟩}, {⟨𝑡𝑒𝑙𝑒𝑣𝑖𝑠𝑖𝑜𝑛𝑠𝑡𝑎𝑡𝑖𝑜𝑛, 𝑐𝑖𝑡𝑦⟩},

{⟨𝑐𝑜𝑚𝑝𝑎𝑛𝑦, 𝑐𝑜𝑚𝑝𝑎𝑛𝑦⟩ ⟨𝑡𝑒𝑙𝑒𝑣𝑖𝑠𝑖𝑜𝑛𝑠𝑡𝑎𝑡𝑖𝑜𝑛, 𝑐𝑜𝑚𝑝𝑎𝑛𝑦⟩}, {⟨𝑠𝑝𝑜𝑟𝑡𝑠𝑡𝑒𝑎𝑚, 𝑠𝑝𝑜𝑟𝑡𝑠𝑙𝑒𝑎𝑔𝑢𝑒⟩},
{⟨𝑏𝑎𝑛𝑘,𝑏𝑎𝑛𝑘⟩} {⟨𝑡𝑒𝑙𝑒𝑣𝑖𝑠𝑖𝑜𝑛𝑠𝑡𝑎𝑡𝑖𝑜𝑛, 𝑡𝑒𝑙𝑒𝑣𝑖𝑠𝑖𝑜𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘⟩}, {⟨𝑡𝑒𝑙𝑒𝑣𝑖𝑠𝑖𝑜𝑛𝑠𝑡𝑎𝑡𝑖𝑜𝑛,𝑤𝑒𝑏𝑠𝑖𝑡𝑒⟩}

which sub-relations with well-defined semantics can be derived.
Furthermore, it is observed that 𝐹𝑖𝑛𝑒𝐺𝑟𝑒𝑆𝑐𝑜𝑛𝑐𝑒𝑝𝑡 performs better
than 𝐹𝑖𝑛𝑒𝐺𝑟𝑒𝑆𝑒𝑛𝑡𝑖𝑡𝑦 in majority of the cases for both Yago and
NELL datasets. We conjecture this is due to the fact that the seman-
tics of the entity types directly obtained from ConVec vectors (see
Section 6.1) are more precise, whereas, the semantics derived from
the vectors of the entities associated with the types are prone to
noise and errors. Therefore, the type similarities would be more se-
mantically aligned in the case of 𝐹𝑖𝑛𝑒𝐺𝑟𝑒𝑆𝑐𝑜𝑛𝑐𝑒𝑝𝑡 , thereby leading
to superior performance of the method. Another important insight
from the results is that while it is indeed favorable to replace a
polysemous relation with multiple sub-relations, it is certainly not
a trivial task to obtain these sub-relations by simply defining their
semantics in terms of unique type pairs. The pair baseline that corre-
sponds to such sub-relations can be seen to score consistently lower
in all settings. The subject and object baselines fair better in this
regard, though the proposed FineGReS approach is clearly the most
optimal. From Table 3, it can be seen that the non-embedding base-
line was outperformed by FineGReS with the exception of TransE
giving better result for NELL dataset. As mentioned, this baseline
benefits from textual context which is lacking for our approach and
therefore, a fare comparison is hard to perform. Still, the results indi-
cate that KG embeddings are able to represent the semantics of the
relations and identify fine-grained relation semantics in large KGs,
even in the absence of additional cues or background knowledge.

Qualitative Results. Table 4 shows a few representative examples
of the sub-relations, along with their count, obtained by FineGReS
in different settings for Yago and NELL. It can be seen that semanti-
cally different entity type pairs have been clearly separated out as
distinct sub-relations, e.g. the ⟨𝑠𝑜𝑣𝑒𝑟𝑒𝑖𝑔𝑛, 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔⟩ pair for owns
relation where sovereign is semantically distant from other types or
agentCompetesWith where ⟨𝑏𝑎𝑛𝑘,𝑏𝑎𝑛𝑘⟩ is a separate sub-relation.
Other sub-relations have multiple type pairs associated with them
based on their semantic proximity. Note that in a few cases, the
optimal configuration for a relation could indeed correspond to the
pair or subject/object baseline depending on the associated type
pairs. The FineGReS method is able to automatically determine this

optimal configuration of the sub-relations for each relation relying
solely on the triples in the KG dataset and the associated entity
type information.

6.3 Manual Evaluation with Yago
In order to estimate the usefulness of the fine-grained sub-relations
obtained from FineGReS, we performed a limited manual evalu-
ation and analysis on the Yago dataset. Three annotators were
given the different type pairs associated with 15 candidate rela-
tions in Yago having more than two distinct type pairs) and asked
to independently identify any potential sub-relation clusters by
assigning labels to the type pairs. The relations for which atleast
two annotators agreed on the label assignments were taken into
consideration as the true values. These were then compared with
the labels obtained from the top k best performing FineGReS set-
tings from Table 2 for each relation and the Hits@k metric was
calculated. Essentially, we measure how often the sub-relations
identified by human annotators for each relation were also found
by the proposed technique among the top k performers. The values
of Hits@1 and Hits@3 were found to be 0.33 and 0.66 respectively,
indicating that the sub-relations discovered by FineGReS indeed
resembled the semantics that the human annotators had identi-
fied to be useful for many of the relations. The manual evaluation
proved to be challenging due to the subjective nature of this task,
where humans could not always identify the precise semantics of
potential sub-relations in the absence of additional context. Embed-
dings derived from relational learning models are superior in this
regard as they are able to encapsulate the latent semantics of the
KG relations, hence they are well-suited to the task of fine-grained
relation discovery.

Discussion. A closer inspection of the sub-relations obtained
from FineGReS revealed further interesting insights. First of all, due
to the data-driven nature of the proposed approach, where only
KG triples serve as data points, the results are worse for relations
with a smaller representation in terms of the number of triples in
the dataset, as compared to the relations with a larger number of
triples. This is quite expected as the clustering algorithms fail to

829



Discovering Fine-Grained Semantics in Knowledge Graph Relations CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Table 5: Performance Comparison for Entity Classification
Task for Yago and NELL (R refers to original relations, Base
refers to the non-embedding baseline)

FineGReS
R pair subject object Base TransE DistMult

Yago
P .893 .916 .906 .918 .926 .923 .928
R .908 .925 .921 .935 .938 .941 .942
F1 .894 .914 .909 .924 .926 .931 .931

NELL
P .643 .692 .696 .665 .567 .705 .713
R .689 .727 .729 .703 .645 .736 .747
F1 .650 .701 .713 .683 .584 .715 .726

identify good clusters in the vector space when there are very few
data points available. Along the same lines, it is important to point
out that if a type pair has few data points but it is semantically
distinct from the others, it is still identified as a separate cluster, e.g.
in the case of ⟨𝑏𝑎𝑛𝑘,𝑏𝑎𝑛𝑘⟩ type pair for the agentCompetesWith
relation in NELL (Table 4). This way, the semantics of the type
pairs for a relation play a decisive role in the clustering, rather than
the number of data points (i.e. frequency with which the relation
connects the different type pairs). Furthermore, it was seen that
the proposed approach is rather too aggressive for some relations,
where there might be different entity types associated with the
relation but they still represent the same semantic. Especially in
Yago, while relations such as lives_In andmarried_To convey a clear
meaning, due to the hierarchical ontology structure, the entities
associated with these relations form different type pairs such as (of-
ficeholder, country) and (scientist, site) in the case of lives_In relation.
Therefore, the FineGReS approach discovers separate sub-relations
for these relations despite the same semantic. In the same dataset
there is another relation participatedIn where the types officeholder
and scientist play distinctly different roles and indeed belong to
separate sub-relations. As the mapping of the entities to their types
is performed consistently for all the triples in the dataset, and not
on a per-relation basis, the proposed method cannot distinguish
the cases where the entities such as officeholder and scientist should
be abstracted to represent the person type, as a human annotator
would understand. Related to this discussion, it is noteworthy that
the assignment of the types to the entities can be differently per-
formed in the underlying dataset depending on the required level
of granularity. The proposed method can, in principle, work at dif-
ferent levels of fine-grained semantics as dictated by richness of
type assignment of the entities in the hierarchy of the ontology or
as desired by a downstream application.

6.4 Entity Classification Use Case
In order to empirically evaluate the FineGReS method in terms of
the usefulness of the derived sub-relations, we consider the popular
use case of entity classification which is an important task for KG
completion [24]. It is modeled as a supervised multi-label classifica-
tion task, where the entities are assigned to their respective types.
Previous works have performed type prediction for entities in KGs
based on statistical features [26], textual information [17] as well
as embeddings [1]. Taking cue from the same, we design a simple

architecture with a CNN classifier [38] for the multi-label classifica-
tion task which can jointly classify both the entities in a given triple
to their respective types.8 The model consists of a convolutional
layer with feature detector, and ReLu activation, this is followed
by a max pooling layer and dropout layer to reduce over-fitting.
The output is passed through a fully connected layer with softmax
activation to obtain the probability of the different classes for being
the predicted type for the entities. The Adam optimizer was used
with the learning rate set to 0.0001. The experiments were run on
a server with Intel X86 CPU and using a single NVIDIA GTX1080
GPU with 11GB RAM. The dataset for the classification task was
obtained by replacing the original polysemous relations in the KG
dataset with their corresponding fine-grained sub-relations in the
relevant triples, obtained from the best performing setting of the
FineGReS method as well as from the baseline techniques described
in Section 6.1. The performance of entity classification measured in
terms of weighted precision, recall and F1 scores (averaged over 10
runs) is shown in Table 5 for Yago and NELL. The main objective is
to measure the improvement in performance when the relations
in the triples of the KG are dictated by well-defined, fine-grained
semantics as opposed to ambiguous semantics. The results confirm
that entity classification task indeed sees an improvement when
the underlying dataset is comprised of relations with fine-grained
semantics obtained from FineGReS method, in comparison to the
original polysemous relations (denoted as R in the tables), as well as
the relations obtained from other feature-based and non-embedding
baselines. In particular, the gains seen over the pair setting are in-
dicative of the superiority of the FineGReS method in terms of not
merely finding any set of sub-relations but finding the optimal
configuration of the sub-relations that best represent fine-grained
semantics for the relations.

7 CONCLUSION
In this paper, we have presented the task of fine-grained relation
discovery in knowledge graphs, which is an important problem
that has not been fully explored. We have proposed a scalable and
data-driven method FineGReS that automatically determines an
optimal configuration for deriving fine-grained sub-relations by
taking advantage of the latent relation semantics represented by
KG embedding models. This technique does not rely on additional
background knowledge and thus it can be employed for arbitrar-
ily large and heterogeneous KGs. We established several baselines
and conducted extensive empirical evaluation that demonstrated
the difficulty of this task and the efficacy of the proposed method
for learning fine-grained relation semantics. The improved perfor-
mance for the task of entity classification strongly indicates the
promise of this approach. Since the method relies on the type infor-
mation of the entities, FineGReS can currently be applied only to the
KGs accompanied by their ontologies. It would be interesting to ex-
tend the approach to derive relation semantics from other sources,
such as text. As future work, we also plan to perform a systematic
analysis of the utility and impact of this method on further tasks
such as relation extraction and question answering over KGs.

8The setup is intentionally simple in these experiments so as to draw attention to
the effect on performance from different configurations of relations and pseudo sub-
relations in the KG dataset. It could arguably be replaced by any state-of-the-art
technique.
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