Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/11108/563
Titel: 

Art Creation with Multi-Conditional StyleGANs

Autoren: 
Dobler, Konstantin
Hübscher, Florian
Westphal, Jan
Sierra-Múnera, Alejandro
de Melo, Gerard
Krestel, Ralf
Datum: 
2022
Quellenangabe: 
[Editor:] De Raedt, Luc [Title:] Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence AI and Arts (IJCAI-22) [Pages:] 4936-4942
Zusammenfassung: 
Creating art is often viewed as a uniquely human endeavor. In this paper, we introduce a multi-conditional Generative Adversarial Network (GAN) approach trained on large amounts of human paintings to synthesize realistic-looking paintings that emulate human art. Our approach is based on the StyleGAN neural network architecture, but incorporates a custom multi-conditional control mechanism that provides fine-granular control over characteristics of the generated paintings, e.g., with regard to the perceived emotion evoked in a spectator. We also investigate several evaluation techniques tailored to multi-conditional generation.
Persistent Identifier der Erstveröffentlichung: 
Dokumentversion: 
Published Version

Datei(en):
Mit dieser Publikation sind keine Dateien verknüpft.





Publikationen in ZBWPub sind urheberrechtlich geschützt.