Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/11108/521
Titel: 

COVID-19++: A Citation-Aware Covid-19 Dataset for the Analysis of Research Dynamics

Autoren: 
Galke, Lukas
Seidlmayer, Eva
Lüdemann, Gavin
Langnickel, Lisa
Melnychuk, Tetyana
Förstner, Konrad U.
Tochtermann, Klaus
Schultz, Carsten
Datum: 
2021
Quellenangabe: 
[Title:] 2021 IEEE International Conference on Big Data (Big Data), 15-18 Dec. 2021 [Publisher:] IEEE [Place:] New York City [Pages:] 4350-4355
Zusammenfassung: 
COVID-19 research datasets are crucial for analyzing research dynamics. Most collections of COVID-19 research items do not to include cited works and do not have annotations from a controlled vocabulary. Starting with ZB MED KE data on COVID-19, which comprises CORD-19, we assemble a new dataset that includes cited work and MeSH annotations for all records. Furthermore, we conduct experiments on the analysis of research dynamics, in which we investigate predicting links in a co-annotation graph created on the basis of the new dataset. Surprisingly, we find that simple heuristic methods are better at predicting future links than more sophisticated approaches such as graph neural networks.
DOI der veröffentlichten Version: 
Dokumentversion: 
Published Version

Datei(en):
Mit dieser Publikation sind keine Dateien verknüpft.





Publikationen in ZBWPub sind urheberrechtlich geschützt.