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ABSTRACT 
This paper charts the evolution of Web Science as a 
research field. It describes a mixed methods analysis of 
papers published at the ACM Web Science Conference 
series from 2009 to 2016, using co-citation analysis, 
bibliographic coupling, natural language processing, topic 
modelling and network visualisation techniques in order to 
map the intellectual structure, i.e. current topics, knowledge 
base and knowledge transfer, of the field of Web Science. 
The knowledge base of the Web Science community and 
the knowledge transfer from the ACM Web Science 
Conference series are studied, revealing major themes and 
key authors as a map of Web Science. In particular, the 
foundations of the Web Science community are revealed 
via co-citation analysis of authors of papers cited by ACM 
Web Science papers, while NLP analysis reveals topical 
descriptors and application contexts of Web Science. 
Finally, author-based bibliographic coupling of papers 
published at Web Science Conferences reveals authors who 
have been influenced by the Web Science community. In 
sum, this paper presents a knowledge map of the Web 
Science discipline visualizing topical foci, methodical roots 
in various disciplines, and key players in Web Science 
research. 

KEYWORDS 
Web Science; community analysis; bibliometrics; 
disciplines; Saffron; application contexts; mixed methods; 
interdisciplinarity; citation analysis; natural language 
processing; topic modelling. 

1 INTRODUCTION 
Web Science (WebSci) concerns the impact of the web and 
its ecosystems on society, and of society on the web. One 
of its key strengths is its interdisciplinarity (Hall et al., 
2016), but this can also be a challenge: collaboration across 
disciplinary boundaries can be difficult and time 
consuming, acknowledged by efforts in the WebSci 
community to address this challenge (Hooper et al., 2014). 
Although there has been much discussion about the 
composition and representation of disciplines within 
WebSci, little work has addressed it. There is thus little 
evidence about what research foci and disciplines constitute 

WebSci, the true extent of its interdisciplinarity, or the 
topics addressed in WebSci research.  

Typically, self-reflective examinations that provide 
answers to those questions fall under the umbrella of 
“Science of Science” (Fortunato et al., 2018) which 
provides the methods to study and map the structures of 
science on various levels, e.g. in terms of discipline or 
active scientists, thus revealing detailed insights into the 
intellectual basis of a discipline, its evolution over time, the 
community shaping it, and the specific research landscape 
that has been formed. These descriptive studies help build 
communities, defining for example who a web scientist is, 
and act as diagnostic tools aiding strategic management of 
a community or discipline. On a pragmatic level, the results 
of “science of science” studies help steer conference 
organization and align expectations with reality (e.g., by 
suitably guiding topics in the Call for Papers to 
strategically adress stakeholders). 

In 2012, we made a first attempt in this regard and 
presented a proof-of-concept of how we can use Natural 
Language Processing (NLP) to understand disciplinary 
representation within WebSci (Hooper et al., 2012); in 
2013, we built on this with an analysis of almost 500 
articles and an expert survey to gain insight into links 
between NLP-generated terms and disciplines (Hooper et 
al., 2013).  

The survey described in the 2013 paper asked experts 
to match disciplines (from past WebSci Calls for Papers) 
with terms (extracted from WebSci papers with NLP). We 
were surprised to receive unsolicited comments criticising 
both lists: “the [term] list seems to be very much slanted 
towards technology and away from anything like law, 
economics, sociology”; “you need to add all the 
[humanities] disciplines if you’re going to add philosophy 
[…] And what about art, design, media studies, gender 
studies?”; “There are some startling absences, e.g. business 
studies, art, culture […] and education.” 

These comments showed a discrepancy between 
expert perceptions of what WebSci is compared with both 
disciplines from WebSci Calls for Papers and core WebSci 
research terms. This motivated us to investigate more 
deeply and to detect the underlying schools of thought or 
“invisible colleges” (Crane, 1972) that build the basis for 
WebSci.  

We combine several approaches to study: where the 
WebSci Conference community derives its knowledge (via 
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reference analysis); what is discussed and how knowledge 
is phrased (via terms from papers published by the 
community); and how the WebSci community’s knowledge 
is processed (via citation analysis; Garfield, 2004). 

To do so, we expanded the explorative study by 
rerunning the NLP analysis with more data (expanding the 
corpus to 2016) and applying further methods, i.e. citation 
and network analysis. NLP helps reveal concepts 
underlying current WebSci research, but WebSci papers’ 
reference lists and citations are also rich sources that 
indicate knowledge flows between articles (references refer 
to the knowledge base that an article builds on, whereas 
citations reflect the impact of an article on subsequent 
work, i.e. the knowledge transfer).  

These knowledge flows of WebSci can be exploited 
in our analysis/mapping of invisible colleges, 
interdisciplinarity and the intellectual structure of WebSci 
(‘Intellectual structure’, a term from bibliometrics, 
concerns how a field’s structure emerges based on 
scholarly works cited by authors publishing in this field). 
By triangulation of methods from both NLP and citation 
analysis, we aim at overcoming potentially subjective 
perceptions of WebSci, as might be apparent in interviews 
conducted in our previous work (Hooper et al., 2013).  

As such the paper takes a descriptive approach 
shedding light on underlying structures of WebSci and 
opening up to interpretation. We hypothesize that analyses 
will especially show that WebSci, as of today, may rather 
be a multidisciplinary field, leaving disciplines tackling 
research questions in rather isolated manner, than one of 
strong interdisciplinarity, in which disciplines rather work 
together to provide solutions for shared research problems, 
as envisioned by Hall, Hendler, and Staab (2016) for 
WebSci. 

 
In particular, this paper addresses the following 

research questions: 
1. What disciplines and traces of interdisciplinarity 

are evident in WebSci research? 
2. How does WebSci link thematically with other 

disciplines? 
a. On what themes does WebSci research build? 
b. What areas are affected by WebSci research?  

3. Who are the key people in WebSci research?  
4. What does a map of WebSci reveal? 
5. How has the landscape of WebSci evolved over 

time? 
 

To the best of our knowledge this paper is the first 
analysis of its kind of WebSci. Of course, as the field 
progresses and expectations and reality further develop, 
similar studies should be carried out on a regular basis in 
order to follow the evolution of the field through time. We 
hope that such analyses support and inspire the WebSci 

community to further investigate and discuss its self-image 
and composition as well as whether its goals are met or 
adjustments are needed. 

2 BACKGROUND AND RELATED WORK 
We are especially concerned with methods that reveal 
knowledge flows and themes within WebSci. Thus, our 
work uses both co-citation analysis (Chen and Carr, 1999; 
Goodrum et al., 2001) which has been proven to be good 
for examinations of conferences (Agarwal et al., 2017) as 
well as journals (Haustein and Larivière, 2014) and fields 
(Düzyol, Taşkın and Tonta, 2010). Since our previous 
publication (Hooper et al., 2013), new work include an 
approach to visualising a domain’s literature based on co-
readership (Kraker et al., 2013), visualising conference-
author-coupling and conference-user-coupling networks 
(Ni and Jiang, 2016) and mapping an interdisciplinary 
Network of Excellence (NoE; Sahal et al., 2013). The latter 
work examined where members of the NoE publish. By 
contrast, we focus on the themes present in WebSci 
publications, rather than the domains WebSci experts 
publish in.  

We also use bibliometric methods to find traces of 
interdisciplinarity as well as of the intellectual structure of 
WebSci as appearing in articles published at WebSci 
conferences (Wagner et al., 2011). Since there are various 
publication outlets that can be addressed by an 
interdisciplinary audience we investigate publications 
stemming from the WebSci conference series, which is the 
main venue at which web scientists gather1. The Microsoft 
Academic Graph2 started to compile bibliometric 
information on conferences too: however, these data 
describe top cited authors or citation venues and do not 
offer maps of science. 

2.1 Bibliometric Mapping and Natural Language 
Processing 
The work described in this paper is based on the 
assumption that research fields can be described through 
the use of specific keywords, as multi-word terms. This 
assumption relates to van Eck and Waltman’s (2010) study 
on bibliometric mapping, where they describe how the 
different areas of expertise can be represented and 
identified thanks to clusters of keywords in a two-
dimensional space. 

Previous techniques addressing the domain-specific 
term extraction task have typically involved the use of 
external resources (Bordea, 2013), either as training data 
                                                                 
1 Another venue worth examining is the Journal of Web Science 
(Online ISSN: 2332-4031) that launched in 2015 and has 
published 15 articles till June 2018.  
2 https://www.microsoft.com/en-
us/research/project/academic/articles/www-conference-analytics/ 
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for supervised machine learning, or to build symbolic rules 
for non-statistical systems, like pre-built domain 
taxonomies (Coulter, Monarch, and Konda, 1998), or also 
for experts connections with sets of key phrases associated 
with authors specialized in a particular field, as available in 
some specific publication platform like Google Scholar3, 
Semantic Scholar4, or Research Gate5. However, such 
resources are often not available for the domain, or are very 
restrictive. In fact, there is no such resource readily 
accessible for the WebSci domain. More recent work from 
Jiang, Endong, and Jianzhong (2015) also raised this issue 
and proposed a domain independent technique for term 
extraction, leveraging the problem of human effort to create 
resources when they are not already available. However, 
their approach relies on specific common structural features 
derived from research papers.  

Our corpus, as described below in more details, not 
only contains articles but also keynotes and workshops, 
which structures are different from research papers. Their 
approach would thus force us to reduce the corpus to papers 
only, which would result in a significant loss of 
information. On the contrary, the system chosen for this 
domain-specific term extraction work, namely Saffron 
(Bordea, 2013), does not restrict its scope to a type of 
document but can be applied to any machine readable 
textual documents. It was developed following an 
automatic method (Bordea and Buitelaar, 2010), described 
in the following section, which has the benefit of not 
relying on any external knowledge in order to extract 
domain-specific terms.  

Word co-occurrence analysis, a content analysis 
technique, is then used to discover implicit relations 
between the extracted topical descriptors. This technique 
was applied to analyse the interconnections between a main 
field, i.e., fuzzy logic theory, and its computing techniques 
(Lopez-Herrera et al., 2010), a setting that is similar to our 
analysis of WebSci. A more recent work on co-word 
analysis (Wang et al., 2012) outlined several limitations 
related to the use of keywords and proposes a method to 
integrate expert knowledge into the process, requiring 
however a considerable amount of human intervention for 
the construction of domain specific thesauri.  

We alleviate this challenge by completely automating 
the process of identifying topical descriptors and by 
automatically constructing a domain taxonomy (topical 
hierarchy), visualizable in a graph. Involving human 
experts for this task would have involved a colossal work, 
being costly in terms of both time and human expertise 
resource. Moreover, one can argue the ability of a human to 
be able to comprehend a hierarchically organized overview 

                                                                 
3 https://scholar.google.com 
4 https://www.semanticscholar.org 
5 https://www.researchgate.net 

of the topics on such huge amount of documents, and 
evaluate the semantic relatedness of the terms over the 
whole corpus. 

WebSci is an interdisciplinary field, at the crossroad 
of domains as diverse as Physics, Psychology, and 
Economics. Each domain has a different level of formality, 
with a varying number of natural language terms and a 
more or less deterministic syntax. This impacts the 
performance of term extraction tools, with a larger number 
of correct terms extracted for some domains than for others. 
In Zhang et al. (2008), different term extraction approaches 
are evaluated over two domains, a Biology corpus and a 
small general knowledge corpus of Wikipedia articles; term 
extraction performance is shown to vary depending on the 
domain. More recent work (Bordea et al., 2013) studies the 
performance of term extraction systems over three domains 
(Computer Science, Biomedicine, and Food and 
Agriculture). That work showed that Saffron, our NLP tool, 
produces stable results across different domains, which also 
motivated its reuse here. 

2.2 Citation Analysis on Author Level 
We use citation analysis (co-citation and bibliographic 
coupling) to detect knowledge flows to and from the 
WebSci community and to study where the WebSci 
community positions itself in terms of where its knowledge 
stems from (knowledge base) and how it is perceived by 
third parties (knowledge transfer). Besides taking a 
descriptive approach with counting citation numbers, co-
citation and bibliographic coupling exploit the directed 
network of citations/references and publications and link 
publications according to the amount of shared 
citations/references. Co-citation analysis provides maps of 
scientific fields and reveals their underlying communities 
as well as their intellectual structure (Tonta and Düzyol, 
2010). It allows for different units of analyses (i.e. levels of 
aggregation), e.g. journals (Culnan, 1987), authors 
(McCain, 1986), conferences (Ni and Jiang, 2016) or fields 
(Zhao and Strotmann, 2008).  

In our case, two units are co-cited (Small, 1973) if 
they both are referenced in the same article stemming from 
the WebSci Conference paper corpus. This demonstrates 
how authors of the WebSci Conferences link units and how 
they utilize them for WebSci research. As such, 
information on co-citation reflects the knowledge base of a 
unit. Bibliographic coupling is the counterpart of co-
citation (Kessler, 1963). Two units are bibliographically 
coupled if they both share at least one unit of the WebSci 
Conference paper corpus in their bibliography. 
Bibliographic coupling represents a transfer of knowledge 
and explains how WebSci papers are reused by other units. 
Hence, again, bibliographic coupling reveals how a unit 
influences other units and how it links them thematically. 

We use the author as our unit of analysis. As 
described in White and Griffith (1981) and confirmed by 
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McCain (1986), Zhao and Strotmann (2011), and Rorissa 
and Yuan (2011), author co-citation networks can 
accurately represent the intellectual structure of a field, i.e. 
which thought leaders the field is based on, or who is 
building bridges between different communities.  

Following the approach of White and Griffith 
(1981),), we do not carry out our analyses on single 
documents but on sets of documents associated with a 
single researcher. Hence, we work with the œuvre of a 
researcher that reflects what the author “Strohmaier”, for 
example, stands for in terms of topic6. Nerur, Rasheed, and 
Natarajan (2008, p. 322) conclude that “Often an author’s 
work over a period of time tends to be characterized by 
thematic consistency, advocacy of a particular perspective, 
and cumulative contributions in answering a specific 
research question”. Åström has shown a good 
correspondence between maps based on author‐co‐citation 
analysis and on co‐occurrence of keywords used to describe 
their papers (Åström, 2002). 

This author-based approach is also useful for 
overcoming challenges caused by sparsity of our data. The 
low number of papers in the citation analysis corpus and 
the interdisciplinary nature of the WebSci community 
affect the probability of receiving reasonable results on a 
per-paper basis (i.e. we are unlikely to detect a sufficient 
amount of papers that are cited and referenced more than 
once, given that citation distributions often obey power 
laws; Seglen, 1992).  

The number of articles and the number of authors 
citing WebSci papers of the three conferences was low, so 
the processing of bibliographic coupling was also carried 
out on an author basis and for the full set of citing 
documents (that cite articles from each of the three 
conference years). Hence, author-level citation analyses 
allow for exploitation of denser citation distributions. 

3 METHOD 
We gathered two corpora of data7, then used NLP to extract 
topics and conducted citation analysis, followed by 
graphing and visualisation techniques to make sense of the 
resulting graphs. We use two approaches to examine the 
links between papers and topics within the WebSci 
community: betweenness centrality of top terms from 
papers, and co-citation of papers. Those different 
approaches are complementary to one another and focus on 
different aspects - thus offering the chance to examine data 
about the WebSci community through different lenses. 

                                                                 
6 However, the papers considered here might not be equivalent to 
the total œuvre of a researcher because some papers might not be 
co-cited/bibliographically coupled with other papers in our data 
set (White and Griffith, 1981). 
7 The data will be made available on Zenodo. 

3.1 Data Gathering 
The NLP corpus consists of WebSci Conference 

proceedings from 2009 to 2016 inclusive. The precise 
composition of these vary year-on-year, depending on 
decisions by each program committee regarding inclusion 
of keynote talks and workshop proposals and papers. We 
include everything classified as part of a WebSci 
proceeding, giving over the 8 years a total of 778 PDF files 
(each file representing one paper, poster, workshop or 
keynote), with variation per year depending on the 
conference scale and whether, for example, the PC chose to 
include materials such as keynote talks and posters in the 
formal proceedings (from 2009 - 2016, respectively, we 
had 119, 109, 180, 45, 106, 65, 71 and 83 files: a total of 
778, of which 718 were processed with our software). 

The citation analysis corpus consists of publication 
and citation data from the bibliographic database Scopus8. 
By time of investigation, beginning of 2016, Scopus has 
indexed three out of eight WebSci Conferences, i.e. 
WebSci14, WebSci15 and WebSci16. The number of 
papers published at these conferences (n=198) is relatively 
stable with 63, 68 and 67 papers in 2014, 2015 and 2016 
respectively, authored by 186, 204 and 193 authors 
respectively. Given the short citation window it is 
reasonable to report citation numbers for papers from 
WebSci14: 39 papers were cited 143 times. From the three 
years of WebSci Conferences under study 151 Scopus 
papers have cited at least one WebSci publication. 

3.2 Natural Language Processing Method 
We processed the NLP corpus with Saffron9, a system 
which extracts terms and their semantic relatedness within 
areas of expertise in research communities. There were 
several benefits in choosing Saffron for this task: we did 
not need external knowledge, it did not require additional 
manual work, it runs with any machine readable corpus of 
text, it is domain independent, and it produces stable results 
in multidisciplinary fields. Further, having successfully 
used Saffron in our previous analysis, continuing with the 
same tool allows for greater consistency and comparison 
between the old and new analyses. 

Saffron uses algorithms for domain specific term 
extraction and topic taxonomy construction (Bordea et al., 
2013; Bordea, 2013). The system uses information 
extracted from unstructured documents with Natural 
Language Processing techniques. For a corpus analyzed, it 
considers the whole collection of documents as belonging 
to one domain which is automatically defined and 
delimited. This allows the identification and targeting of 
expressions that are specifically relevant for this area, 
filtering out the ones that may be used across domains or in 
                                                                 
8 https://www.elsevier.com/solutions/scopus 
9 http://saffron.insight-centre.org/ 
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one precise article only. For this purpose, Saffron creates a 
model of the domain (or domain model), based on the 
corpus and defined as a vector of single words representing 
the most generic concepts of the area. This term extraction 
phase is driven by specific features and linguistic patterns, 
following a domain coherence approach. It first selects 
candidate words, placing a higher weight on nouns as they 
carry content meaning, focusing on single words as longer 
expressions are too specific for the scope of a domain 
model as defined above, and being distributed in more than 
a quarter of the corpus (see Bordea et al., 2013 for more). A 
filtering phase then follows, driven by the assumption that 
generic domain words are often mentioned alongside many 
more specific domain words. Once the main high-level 
concepts of the domain have been collected, i.e. the domain 
model, the system extracts more specific terms (multi-word 
noun phrases) belonging to the domain. The domain model 
is thus used as a base to evaluate the coherence of the 
candidate terms within the domain using semantic 
similarity by Pointwise Mutual Information calculation.  

The analysis was run on 718 files, composed of 20 
workshops and a mix of 698 papers, posters and keynotes, 
from which Saffron yielded 9095 potential topics. Such an 
amount of terms is neither intelligible nor interpretable. 
Therefore, after ranking the topics based on a combination 
of statistical measures described in details in Bordea 
(2013), we focused on the most meaningful ones, working 
with the 500 top ranked ones in order to keep a high level 
of quality for construction of the taxonomy. Out of the 718 
documents, 650 contained at least one of those top 500 
topics, and on average 15 different topics were found in 
each document. 

To create the pruned graph which represents the 
taxonomy, we adopted a similarity measure known as the 
association strength (or proximity index or else 
probabilistic infinity index), based on studies on 
bibliometric mapping techniques (Van Eck and Waltman, 
2010). Van Eck and Waltman (2009) showed the interest in 
using this similarity measure over other well-known 
measures, such as the cosine and Jaccard indexes. They 
demonstrated that the latter, belonging to the category of 
set-theoretic similarity measures, does not properly correct 
for the size effect as opposed to probabilistic similarity 
measures, which the association strength belongs to. As a 
result, the set-theoretic measures do not properly normalize 
co-occurrence data. Therefore, in this study we are using 
the association strength which is defined as the measures of 
the strength of relationships between two research terms: 

Iij = Dij / (DiDj) (1) 

where Di is number of articles that mention the term Ti in 
our corpus, Dj is number of articles that mention the term 
Tj, and Dij is the number of documents in which both terms 
appear. Edges are added in the terms graph for all the pairs 
that appear together in at least three documents. Saffron 

uses a generality measure to direct edges from generic 
concepts to more specific ones. This results in a dense, 
noisy directed graph that is further trimmed using an 
optimal branching algorithm which was successfully 
applied for the construction of domain taxonomies in 
Navigli et al. (2011). This yields a tree structure where the 
root is the most generic term and the leaves the most 
specific ones. 

We used a network graph tool, Gephi10, to build the 
graph displaying the links between terms: the nodes are the 
extracted terms and the edges are their links with each 
other. This let us identify clusters of closely related terms. 
We used the Force Atlas 2 algorithm (Jacomy, 2011) to 
layout the graph with the following parameters: Scaling: 
2.0; Edge weight influence: 0.0. We used betweenness 
centrality to weight node importance: this measures the 
fraction of shortest paths going through a node (a high 
value shows that a node plays an important bridging role in 
the network; Barthélémy, 2004). Finally, we ran the 
Louvain method (Blondel et al., 2008) with resolution 10 to 
detect an interpretable set of communities. The resolution 
of 10 was chosen because this yielded communities of a 
sensible granularity: more than one meaningless ‘web 
science’ community, but fewer than 100 disparate 
communities that each relate to very specific terms or 
techniques. 

We interpreted detected communities as application 
contexts concerning topics ranging from technologies (e.g. 
machine learning) to disciplines (e.g. social science) and 
topic areas (e.g. open government). 

3.3 Citation Analysis Method 
We worked with VOSviewer 1.6.5 (Van Eck and 

Waltman, 2010) to process citation data and construct 
citation networks. To analyse the knowledge base of the 
WebSci Conferences from 2014 to 2016, we carried out a 
co-citation analysis of the unique authors referenced in 
articles published at those conferences. The knowledge 
transfer from authors mentioned in papers published at 
those conferences to 151 citing documents was analysed by 
using bibliographic coupling. VOSviewer was used to 
visualize the network of co-cited authors for the three years 
together and for each year separately. All cited authors 
were included, resulting in a co-citation-network of 5,277 
authors. The author network resulting through 
bibliographic coupling of 151 citing documents consisted 
of 453 authors. 

Before running co-citation analyses and bibliographic 
coupling, automatically extracted author names from 
VOSviewer were manually checked, corrected (e.g., 
‘commission, e.’ became ‘european commission’), and 
merged to account for different citation styles used in the 
                                                                 
10 https://gephi.org/ 



 

6 
 

papers of the citation analysis corpus, (e.g., ‘adamic, l.’ and 
‘adamic, l.a.’ were merged to ‘adamic, l.a.’). This was 
carried out by one author (IP), comparing extracted author 
names with names indexed in Scopus. A conservative 
approach was taken: if names were too ambiguous they 
were not merged. 

We used VOSviewer’s association strength algorithm 
for clustering and network layout (Van Eck and Waltman, 
2009). To optimize the clustering and visualizations, 
VOSviewer’s standard settings were kept as provided for 
co-citation analyses and bibliographic coupling. To collect 
representative terms that describe the fields the authors are 
working and publishing on (their œuvre), we searched the 
authors’ Google Scholar Citation Profiles and personal 
webpages for keywords they use themselves to characterize 
their research (even if they may not be the most accurate 
representation of the authors’ œuvres or might be 
incomplete).  

4. RESULTS 
In the following we present and briefly discuss the results 
of the NLP and citations analyses. In Section 5 we will 
summarize the results and reflect on them in view of our 
research questions. 

4.1 Natural Language Processing Results and 
Discussion 

The NLP outputs let us visualise the extracted terms as well 
as examine top rated terms and application contexts. Figure 
1 shows a visualisation of the extracted terms, where larger 
nodes and label fonts indicate terms with higher 
betweenness centrality and colours indicate detected 
communities. Table 1 lists terms with a high betweenness 
centrality, and includes for reference the highly rated terms 
from our previous work in 2013 (Hooper et al., 2013). 

In 2013, as now, we generated a list of the top 20 
terms as ranked by betweenness centrality. Perhaps 
surprisingly, only 7 concepts are in common (although 
some concepts take multiple positions in one or both lists, 
e.g. “social network”, “social networking”, “social 
networking site”). Common concepts are: linked data / 
linked data principle; semantic web; social science; social 
network / social networking / social network site; social 
media / social medium; information retrieval; search 
engine. The terms include technologies (linked data, 
semantic web), disciplines (social science) and core 
WebSci topics (social networks and social media): this is 
all to be expected. Some terms only appeared in the 2013 
list. These are:  learning network, web page, personal 
learning environment, social interaction, mobile device, 
future research, internet user, uniform resource identifier, 
web science research, user interface, web community, web 
application, linked data principle.  

Table 1: The 20 terms from 2017 with highest 
betweenness centrality (b.c.), and for comparison the 
top terms from our 2013 analysis (note b.c. values are 

not directly comparable as they are sourced from 
separate graphs; Hooper et al., 2013).  

2017 term (b.c.) 2013 term (b.c.) 
open data (177) semantic web  (758) 
science research (150) social media (590) 
open government (144) information retrieval (504) 
linked data (140) social networking site (495) 
public sector (132) social science (456) 
government data (120) search engine (454) 
semantic web (115) social networking (434) 
social science (112) learning network (360) 
social network (105) web page (304) 
data management (105) personal learning environment 

(297) 
preferential attachment 
(96) 

social interaction (282) 

social medium (86) mobile device (270) 
machine learning (81) future research (260) 
training centre (80) internet user (258) 
random graph (75) uniform resource identifier 

(246) 
information retrieval 
(70) 

web science research (235) 

computer science (61) user interface (235) 
time series (52) web community (235) 
data collection (51) web application (234) 
search engine (50) linked data principle(231) 

 
We believe the learning terms arise from proceedings 

of the 2011 Personal Learning Environments conference, 
which was included in our previous corpus due to their 
presence on journal.webscience.org. 

These materials were excluded in our 2017 corpus as 
less relevant to WebSci, so the absence of learning terms is 
expected. In 2013, the terms “web page”, “future research” 
and “internet user” were associated with disparate contexts 
(much like “training centre” in 2017), so their 
disappearance in the context of a bigger, potentially more 
cohesive corpus is logical. We speculate that, if we were to 
repeat today’s analysis in 2021 with the next four years of 
WebSci conference data, the term “training centre” would 
be very likely to disappear. “Social interaction” is another 
2013 term now absent. We identified it as relevant across 
many disciplines and reflecting the ethos of WebSci. 
Should we, then, be concerned about its absence -- and the 
absence of the comparable terms “web science research” 
and “web community” in 2017?  

The continued presence of key WebSci application 
contexts suggests not, but the loss of “social interaction” 
suggests a shift in focus towards other topics. Other top 20 
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terms from 2013 which dropped to a lower ranking are 
“mobile device” (unclear in meaning, although associated 
with many disciplines) as well as terms that we argue are 
oriented around computer science: “uniform resource 
identifier”, “user interface”, “web application”. Finally, 
“linked data principle” disappeared, but with “linked data” 
the 4th strongest term in 2017, we attribute this to changes 
in wording, not focus. 

The terms “open data”, “open government”, “public 
sector”, “government sector” and “data management” are 
new to the top 20 list in 2017. These terms appear in two 
different application contexts, which we believe are closely 
related. Their emergence makes sense in the context of the 
rise of open data. Other new top 20 terms are “preferential 
attachment”, “random graph” and “time series”, part of the 
graph theory context and suggesting an increased focus on 
graph theory. “Machine learning” and “computer science” 
clearly refer to computer science work, while ”science 
research” and “data collection” are more general terms. The 
other new term, “training centre”, is part of a small 
community including the term “web science doctoral 
training centre”: we presume this arises from papers 
acknowledging the support of this centre. 

Figure 1 shows communities revealed by the 
community detection algorithm, which we can examine and 
interpret as WebSci application contexts. Each community 
has a subset of terms, which can be ranked with 
betweenness centrality. Table 2 details the nine biggest 
communities (we chose to convey the most interesting nine 
communities in this analysis for reasons of brevity), 
including for each its most highly ranked five terms, 
additional terms of interest, number of nodes (giving an 
idea of scale) and colour and position in Figure 1. The 
largest communities are shown first. 

We distinguish between “communities”, detected 
algorithmically, and “application contexts”, where we have 
made sense of multiple communities and their links to 
discern their meaning in WebSci. We note that although we 
describe the application contexts here as separate entities, 
relationships between them exist: for example, information 
retrieval and machine learning clearly have links with 
social research. We believe, however, that the links within 
an application context are stronger than those between 
separate application contexts and are thus not always 
connected with a link in the graph. 

 
Figure 1: Visualisation of the extracted terms. 
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Table 2: Detected Web Science ‘communities’ (underscores in terms replaced with whitespace for readability). 

Root node Top 5 terms Other terms of interest Number 
nodes 

Colour and 
position in Fig. 1 

open data linked data; semantic web; 
knowledge representation; web 

service; data source 

knowledge base, information space, 
web ontology language, rdf triple, 

semantic network 

41 Purple, mid right 

machine  
learning 

information retrieval; ground truth; 
tagging system; training data; 

ground truth data 

classifiers, learning algorithms, 
annotation, reputation, linguistic 

features, tagging 

26 Lime green, 
bottom right 

social  
network 

social medium; data collection; 
online social network; online 

community; information system 

social graph, communication 
technology, content analysis, 

sentiment analysis, health 
information 

26 Orange, mid left 

open  
government 

public sector; government data; 
data management; data provider; 

public sector information 

linked government data, public sector 
data, public service, data market, 

service delivery 

26 Red, far right 

social  
networking 

social interaction; user experience; 
system design; social context; 

personal information 

human computer interaction, socio 
technical system, social capital, 

location based social network, online 
shopping 

25 Blue, bottom left 

social  
science 

computer science, keywords web 
science, web community, 

computational social science, online 
activity 

web science, case study, multiplayer 
online game, internet auction, 

educational technology, political 
science, actor network theory, micro 

blogging service 

25 Pink, upper 
middle 

preferential 
attachment 

random graph; complex network; 
network model; graph theory; 

connected component 

empirical data, scale free network, 
network property, network statistic 

25 Dark Green, top 
of middle 

network 
structure 

network analysis; twitter data; news 
source; twitter search; english 

language 

online network, internet access, 
health care, information flow 

22 Grey, bottom 
centre 

science 
research 

web science community; web 
science research; web science trust; 
learning environment; web science 

butterfly 

web science conference; web science 
curriculum; social science research; 

learning process; educational 
resource 

14 Grey (again), 
upper middle 

 
 
The appearance and centrality of the open data 

community is no surprise, with open linked data a central 
WebSci construct. Open data can be seen as both a 
technology and a social movement (especially in the 
context of government and public sector data), and has 
taken off in recent years. The fourth largest community, 
open government, is linked to open data physically on the 
graph but also linked via its terms. We can view linked 
open data as an application context of WebSci, with 
government and public sector data a topic within that 
context. 

The machine learning community centres on methods, 
with terms such as “ground truth”, “training data” and 

“classifiers”. Again, it is unsurprising to see this in the 
context of WebSci, as these computer science methods are 
relevant for WebSci: machine learning is an application 
context for WebSci. 

The social network community can be reasonably 
assumed to concern social network analysis across the 
breadth of WebSci, with reference to “social issue”, “online 
community” and “social feature”. Social networking is a 
community that, although identified apart from the social 
network community, appears to be part of it: it continues the 
thread with topics such as “social interaction”, “social 
context” and “personal information”. Similarly, the network 
structure community, connected to the social network one 
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and with terms about social network analysis, can be 
considered part of the overall context of social networks. 
The network structure context, also connected to the social 
network context, refers to methods such as “network 
analysis”, and data sources (“twitter data”, “news source”); 
we can also see this as an elaboration of the social network 
context. 

The social science context captures several WebSci 
disciplines and crosses multiple topics (e.g. “educational 
technology”, “political science” and “multiplayer online 
game”); it also includes reference to at least one social 
science approach (“actor network theory”). It is heartening 
to see that social science and computer science, 
fundamentally different disciplines that are foundational in 
WebSci, enjoy a direct link. This is most probably due to 
the popularity gained by “computational social science” 
over recent years. The science research community 
contains methodological terms such as “web science 
research”, “mixed method” and “qualitative research” and 
is linked to the social science community. Together they 
could be seen as a “web science” application context, 
talking about WebSci disciplines and tools. 

The preferential attachment community contains 
references to graph theory, including “graph model”, 
“network model” and “web graph”; this context concerns 
graph theory. 

We do not analyse leaf nodes (individual terms that 
were disconnected from other parts of the graph) and 
smaller communities. An example is the web technology 
community, connected to (and, we argue, part of) the 
semantic web context, and containing terms such as 
“knowledge management” and “semantic web technology”. 
We believe these smaller contexts (small collections of 
nodes connected to larger contexts, rendered in grey) fall 
within the greater contexts with which they are connected 
and hence do not analyse them in turn.  

The application contexts are therefore: “linked open 
data”; “machine learning”; “social networks”; “web 
science”; “graph theory”. In 2013, we found four 
application contexts: “information retrieval”; “personalised 
learning/elearning”; “semantic web”; “social networking”. 

“Social networking” appears in 2013 and now. We 
note that “information retrieval” (the 2013 context) was a 
central term in the new “machine learning” context (and in 
2013 had associated terms such as “sentiment analysis” and 
“knowledge management”): we may consider these two 
contexts synonymous. The old “semantic web” context now 
underlies the “linked open data” context, while the 
“personalised learning/elearning” context has disappeared, 
consistent with the 2017 corpus not including learning-
specific materials. This leaves two new contexts, “graph 
theory” and “web science”. The rise of “graph theory”, 

again, is consistent with what we saw in the top 20 terms. 
The rise of a “Web Science”-specific context suggests 
consolidation within the community. 

4.2 Citation Analysis and Discussion 
In the following we present and briefly discuss the results 
of the author citation analyses of three Web Sci 
conferences. Analyses were performed for all years 
combined and separately for each year. 
 
4.2.1 Citation Analysis of Authors Mentioned in WebSci 
Conferences 2014-2016  
Figure 2a shows the results of the author-based co-citation 
analysis. A ‘density view’ is used, meaning the “larger the 
number of items in the neighborhood of a point and the 
higher the weights of the neighboring items, the closer the 
color of the point is to red. Conversely, the smaller the 
number of items in the neighborhood of a point and the 
lower the weights of the neighboring items, the closer the 
color of the point is to blue” (Van Eck and Waltman, 2016, 
p. 7). The density view also reveals information about how 
often an author has been cited (i.e. size of author name) and 
about the strength of the co-citation relationship of two 
authors. The closer two authors are located to each other, 
the stronger their relatedness in terms of co-citation.  

The combined co-citation analysis of three WebSci 
Conferences resulted in 52 clusters that include 1 to 227 
authors. The largest network of connected authors (giant 
component) consisted of 5,233 authors.  

The network displayed in Figure 2a forms the 
knowledge base of WebSci and reveals a strong core of 
authors concerned with complex networks and social media 
and data mining (Jure Leskovec, 31 citations), 
computational social science (Markus Strohmaier, 13 
citations), web data management (Gerhard Weikum, 21 
citations), WebSci theory (Wendy Hall, 26 citations), and 
sociological aspects of the Web (danah boyd, 29 citations). 
Left from the center we also see the social machine and 
citizen science cluster around David De Roure (18 
citations) and Chris J. Lintott (11 citations). Islands are 
formed by Sophie Stalla-Bourdillon (3 citations; not shown 
due to visibility reasons) and the legal aspects concerned 
with the Web, Ramesh Jain (not shown) and research on 
heterogeneous web data streams, Peter H. Kahn (3 
citations; not shown) and psychological aspects of human-
technology interaction and socio-technical systems, Bogdan 
State with the combination of demographic studies and web 
data (7 citations), and Philipp A. Schrodt (7 itations) 
combining the web with political concepts which is also 
done by David Chandler (5 citations; not shown). 
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Figure 2: a) Left: Co-citation network of authors cited in articles published at the Web Science Conferences 2014-2016 (n= 

5,277 cited authors); b) Right: Bibliographic coupling network of authors citing articles published at the Web Science Conferences 
2014-2016 (n= 453 citing authors). 

The results of the bibliographic coupling of authors 
citing papers from the WebSci Conferences 2014-2016 are 
presented in Figure 2b. The 453 authors were divided into 
34 clusters each containing 1 to 34 authors. Although the 
giant component consisted of 388 authors we see a 
fragmented network with many isolated nodes (only partly 
shown). This reveals that reception of WebSci Conference 
articles takes place in different communities that are not 
necessarily connected to each other. The topics which are 
informed by WebSci research are, for example, web 
technologies and information visualization as represented 
by Matteo Abrate and Di Wang, linked data (Elena Cabrio) 
or studies of human behaviour (Andrew Bullen). On the 
other hand, we see a strong core related to, broadly 
speaking, data science, around Sergey I. Nikolenko (cites 5 
WebSci Conference papers in articles) who works in 
machine learning and internet science, and Emilio Ferrara 
(7 citing articles) who stands for network science and 
computational social science. Lora Aroyo (4 citing articles) 
and her work on crowdsourcing, social web data, 
personalization and human computer interaction serves as 
bridge to Pompeu Casanovas (2 citing articles) who applies 
semantic web concepts to the law. 

 
4.2.2 Knowledge Base of WebSci Conference 2014 
The co-citation network for WebSci14 is displayed in 
Figure 3. The similarity processing grouped 1,734 authors 
in 38 clusters, which include between 1 and 116 authors. 
The largest cluster of connected authors consists of 1,647 
authors. The co-citation analysis on the basis of authors 
resulted in a dense core network with Meeyoung Cha, 
Fabrizio Benevenuto, Krishna P. Gummadi, Filippo F. 

Menczer, and Jon M. Kleinberg cited most often by 
Websci14 authors, with 16, 13, 13, 12 and 11 citations 
respectively.  

The area around Meeyoung Cha, (16 citations), 
including Krishna P. Gummadi,, (13 citations), Florent 
Perronnin (4 citations), and Fabricio Benevenuto (13 
citations), reflects the topics of social computing, 
computational social science, and artificial intelligence. 
Interestingly, in this cluster the links between data-driven 
science and social science are strongly visible via danah 
boyd, Barry Wellmann, and Manuel Castells who mainly 
publish in sociology and philosophy. This area is clearly 
separate from the research conducted by Filippo F. 
Menczer and colleagues, who study complex networks with 
computational methods only. 

The knowledge base of the WebSci14 is also 
characterized by fragmentation. There are several fields of 
study that are only loosely connected, if at all, to the core 
authors and topics. On the left, we see a cluster of authors 
that study the Web and its effect on other areas: Carl T. 
Bergstrom (2 citations) is concerned with the philosophy of 
science and scientometrics, Scott A. Hale (5 citations) 
studies knowledge sharing and language on the Web, Niels 
Brügger (2 citations) researches web history, and Ethan 
Zuckerman (3 citations) studies citizen media and 
journalism.  

More distinctive islands in the co-citation network are 
formed by Lara Schibelsky Godoy Piccolo (3 citations), 
who is specialized in human-computer interaction and user 
engagement research, and Philipp A. Schrodt (7 citations), 
who works in political science and international relations. 
Both are examples of authors that have not been co-cited 
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Figure 3. Co-citation network (density view) of authors 

cited in articles published at the Web Science 
Conference 2014 (n= 1,734 cited authors). a) Top: 

detailed view; b) bottom: full view. 
 

with any authors of the core network, meaning that 
WebSci14 authors have not explicitly created a link 
between Piccolo and Schrodt’s topics and the core network 
topics: no knowledge flow has taken place here. 

 
4.2.3 Knowledge Base of WebSci Conference 2015 
The co-citation network of the authors cited in the 
publications of the WebSci15 is shown in Figure 4. The 
associations algorithm identified 33 clusters, including 1 – 
116 authors. The largest network of connected authors 
consists of 2,117 authors. Four authors influenced 
WebSci15 authors strongly: David De Roure, the 
WebSci15 program chair and Tim Berners-Lee each 
received 13 citations, danah boyd, the WebSci12 keynote 
speaker, was cited ten times, and Gerhard Weikum was 
cited eight papers.  

We can highlight several areas of importance. Starting 
on top we see the community around David De Roure, 
concerned with social machines, citizen science, and the 
web of data. Close by we find Tim Berner-Lee and authors 
working on the theory and practice of the world wide web. 
This community can be considered a topical bridge 

between the De Roure-cluster focused on human-web-
interaction and the complex network cluster represented by 
Jure Leskovec and Mark E. J. Newman who study 
properties of networks on a large scale.  

The area around Gerhard Weikum and Christian Bizer 
involves web data management, data mining and 
integration, and linked data. Further right are connections 
to natural language processing, text mining, and machine 
learning (represented by Marco Pennacchiotti). The 
complex network-cluster and the web data management-
cluster are also the densest areas of the network, reflecting 
strong relations between these authors. Further to the left, 
another topical community has formed around danah boyd: 
the authors associated with this cluster can be labelled 
‘Facebook researchers’ studying this particular social 
network in terms of youth cultures (danah boyd), computer-
mediated communication and online dating (Nicole B. 
Ellison), media psychology and emotional contagion 
(Jeffrey T. Hancock). 

The co-citation analysis also revealed some areas that 
are rather loosely connected to the dense core topics. The 
cluster around Susan Halford (5 citations) connects web 
research with concepts from sociology and philosophy, 
prominently reflected by Michel Foucault. Chandler and 
Jirotka appear rather isolated in terms of co-citations. They 
mark distinct fields in web science with David Chandler 
(cited five times) being concerned with political concepts 
and Marina Jirotka (three citations) studying construction 
of human-computer interfaces, human-centred computing, 
and computer ethics. No connection to the core area of the 
WebSci15 knowledge base has been detected, for example, 
for Ramesh Jain (three citations) and colleagues 
researching heterogeneous web data streams.   
 
4.2.4 Knowledge Base of WebSci Conference 2016 
The co-citation analysis reveals a less fragmented 
landscape of the WebSci16 knowledge base than from the 
years before (Figure 5). It has 33 clusters consisting of 5 - 
116. The dense area spans from Ingmar Weber (16 
citations) to Jure Leskovec (14 citations) and represents the 
fields of computational social science, social media and 
data mining, and complex networks. Another dense cluster 
has developed around Gerhard Weikum (11 citations), 
which is concerned with web data management, web 
retrieval and crowdsourcing.  

The third strong area is represented by authors that 
take a sociological or HCI-approach to WebSci and are 
especially interested in social media use, youth culture, and 
methodological questions in web research, for example 
Axel Bruns (10 citations), danah boyd (9 citations), and 
Katrin Weller (6 citations).  
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Figure 4. Co-citation network (density view) of authors 
cited in articles published at the Web Science 

Conference 2015 (n= 2,153 cited authors). a) Top: 
detailed view; b) bottom: full view. 

 
Jenny Preece (4 citations) with her work on 

gamification, motivation, and citizen science and Rachel K. 
Gibson (2 citations) who studies politics organisations’ use 
of new media, serve as topical bridges to philosopher/ 
social scientist Pierre Bourdieu (7 citations) and his work 
on power relations and different forms of capital humans 
can build. This area is expanded by Nicolas Ducheneaut (3 
citations) and research on video games, online presence, 
computer supported cooperative work, and hostility on the 
Web.  

The other area linked to web usage is represented by 
Kevin Crowston (4 citations) who studies open source 
software. Emilio Zagheni (6 citations) stands for 
specialized research in complex web systems, e.g. 
investigating digital traces for demographic research and 
social statistics. Isolated clusters consist of semantic web 
research (Harith Alani, 2 citations), legal aspects of 
information technology and the Web (Sophie Stalla-
Bourdillon, 3 citations), and methods for empirical social 
science (Peter Atteslander, 1 citation). 

 

5. Mapping Web Science 
In the next section we summarize and explain the main 
findings of our analyses and lay out the intellectual 
structure of WebSci as well as our results on the 
interdisciplinarity of the field. We also discuss the 
limitations of our approach. 

5.1 The Intellectual Structure of Web Science 
The NLP analysis revealed the top 20 terms from the 
WebSci conference series, including technologies, 
disciplines and core WebSci topics; some concepts remain 
in common from the 2013 analysis (“social networking”, 
“linked data”, “semantic web”, “social science”, “social 
media”, “information retrieval” and “search engine”), while 
some disappeared due to: exclusion of an e-learning corpus; 
disparate contexts disappearing; a slight drift from some 
computer science terms. New terms concern the rise of 
open data and an increased focus on graph theory. 

The five application contexts revealed by NLP 
analysis are: “linked open data”; “machine learning”; 
“social networks”; “web science”; “graph theory”. The 
“social networks” and “machine learning” contexts are 
broadly constant over time, and we believe the 2013 
“semantic web” context underlies the “linked open data” 
context. New contexts are “graph theory” and “web 
science”. The interesting results obtained by comparing the 
2013 and 2016 corpora motivates us for future work to go 
further in the analysis and do study on a year-to-year basis. 

All citation networks reveal strong connections 
between the authors that build the knowledge base of and 
are affected by WebSci Conferences. The giant component 
from 198 articles over the three years studied consisted of 
5,233 authors, showing that authors publishing at WebSci 
Conferences share a high amount of authors they cite in 
their works. This indicates a tendency of self-referencing in 
the WebSci community (as represented by conference 
papers). Moreover, the knowledge base of WebSci is well-
represented by the five most often cited authors over 198 
papers published at the three WebSci Conferences: Jure 
Leskovec received 31 citations, danah boyd was mentioned 
29 times, Wendy Hall was cited 26 times, and Jon M. 
Kleinberg and Meeyong Cha got 24 citations each. Those 
names translate, roughly, to the main topics studied by 
WebSci Conference contributors: Complex networks, 
social behaviour on the web, foundations and theory of the 
web, network theory and topology, social computing and 
(social) data science.  

The three years of investigation also revealed that the 
core themes (as represented by authors), such as “complex 
networks” and “web theories”, remain relatively stable 
which was confirmed for seven conferences hosted by 
ACM SIGWeb (Agarwal et al., 2017). We can also witness 
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Figure 5. Co-citation network (density view) of authors 
cited in articles published at the Web Science 

Conference 2016 (n= 2,399 cited authors). a) Top: 
detailed view; b) bottom: full view. 

 
changes in topics of the conference, such as gamification in 
2016 or human-computer interaction that became more 
central over the course of the analysed years. However, the 
map of WebSci may be influenced by competing 
conferences and publication venues that are more 
specialized and that may affect publication behaviour of 
authors. Even though Agarwal et al. (2017) argue that some 
prolific authors of SIGWeb conferences publish at multiple 
conferences, our citation analysis showed that semantic 
web research, for example, is not too popular at the WebSci 
Conferences. This could also be due to the change in 
organisation of the WebSci Conferences: after co-location 
of WebSci10 with the WWW Conference and WebSci11 
with Hypertext, the WebSci Conferences have been 
standalone events. 

5.2 Interdisciplinarity 
Of particular relevance in the NLP analysis is the 
emergence of the application context named “social 
science”, which despite its name includes discipline names 
including “social science”, “computer science”, “political 

science” and “computational social science”. The close 
linking of these terms in the graph is a positive indicator of 
interdisciplinarity in WebSci. 

The citation analyses showed that, although there are 
some separate clusters concerned with specific topics and 
authors (Philipp A. Schrodt in Figure 2a) the networks are 
dense and grouped around a notable center reflecting heavy 
mutual citation in WebSci. Knowledge transfer from 
WebSci Conferences to other areas concerned with the web 
(e.g., human computer interaction) also takes place. This is 
further evidence for the interdisciplinary nature of the 
WebSci community.  

But, interdisciplinary research that reciprocally 
informs each discipline is very much focused on computer 
science, network science, and sociology in both, knowledge 
base and knowledge transfer. Other disciplines, such as law 
or philosophy, although being recognized and discussed in 
the WebSci community, form islands of authors without 
links to the core areas and authors of WebSci. Here, there is 
still room for mutual learning and exchange of disciplinary 
concepts and methods to enhance knowledge building in 
WebSci and increase interdisciplinarity, as was always 
intended (Hall et al., 2016). Of course, the WebSci 
Conference series is a good venue to bring together 
communities and disciplines, and our analyses confirm the 
success of these exchanges.  

However, interdisciplinary endeavours need strategic 
planning which also accounts for disciplinary differences, 
for example regarding publication and citation behaviour. 
WebSci16 is a good example for strong interrelations in the 
WebSci community, only little fragmentation took place. 
We assume that this is because extended abstracts, besides 
short papers and long papers, were accepted as submissions 
for the first time since 2013 and that this incentivized social 
scientists and disciplines with a different scientific reward 
system to participate. 

5.3 Limitations 
WebSci is a very young field, and as such the eccentricities 
of specific conferences (e.g. the WebSci 2011 Personal 
Learning Environments workshop) can strongly affect our 
results. We have highlighted when our results are thus 
affected. As the field matures and its dataset grows these 
effects will diminish in subsequent analyses. 

We note two dataset limitations. Firstly, the use of 
WebSci Conference proceedings in the NLP corpus led to a 
slight inconsistency in document type. For example, the 
WebSci proceedings from 2013 and 2016 included 
workshop papers, but other years did not. Ideally we would 
have included all workshop papers, on the basis that 
workshops broaden the scope of the conference and are 
potentially venues where particularly interdisciplinary 
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exchanges may occur; unfortunately, archives from past 
conferences did not allow this. Secondly, the citation 
analysis dataset from Scopus includes only three years of 
WebSci Conferences (2014-2016). Hence, the knowledge 
transfer study was only possible for the 2014 conference 
because of the low number of citations for articles 
published at the 2015 and 2016 conferences. The advantage 
of Scopus is, however, that it indexes author surnames and 
initials, making it an unambiguous and well-proven 
approach that is a strength for author-based citation 
analysis. 

Moreover, limitations concern the methods used in 
our study. Besides the positive feedback loop increasing the 
likelihood that highly cited articles are cited again (Merton, 
1968), citation analysis in general suffers from uncertainty 
regarding the motivation of underlying citations and its 
effect on the developing citation article network (e.g., 
authors tend to cite close colleagues more often; Cole and 
Cole, 1973). Authors may also work on several topics at the 
same time so that the œuvre represented in this limited 
WebSci set may only acknowledge some of the authors’s 
research foci. Citation cartels and extensive self-citation 
distort the network the most. Our results revealed that both 
strong cores and islands in citations networks might be 
symptoms of these practices. But, we have not excluded 
self-citations from our analyses since we were interested in 
the actual knowledge base and transfer that also comprises 
authors who strongly build their research on their own 
work. 

We also did not control for co-authorship. There is a 
tendency towards higher numbers of co-authors in the 
sciences (Wuchty et al., 2007) and WebSci Conferences 
have the highest number of co-authors among seven web 
research-related conferences (Agarwal et al., 2017). 
However, this effect is highly discipline-specific. If using 
authors (and their publications; i.e. their œuvre) as proxies 
for WebSci themes, we can assume that this tendency 
dilutes the results of the citation analysis as author profiles 
may lose their discriminatory power – but this is currently 
not confirmed. 

Finally, we note that this discussion only concerns 8 
years of Web Science. Most papers experience a peak in 
citations 2-5 years after publication (depending on the 
discipline; Brody et al., 2006), and so further insights are 
likely to arise as time passes and citation networks further 
consolidate. Such a limitation is inherent to any temporal 
analysis of a field, and we recommend that this kind of 
analysis is repeated regularly to gain improved insight. 

6. CONCLUSIONS 

We have applied techniques from NLP and network 
analysis in conjunction with citation analysis on a 

significantly large corpus of WebSci materials (698 articles 
and workshops), as well as discussing how these methods 
complement one another. We have also carried out a 
domain analysis of the Web Science field to see how its 
intellectual structure has changed over time. By combining 
several approaches, examining both terms and co-citation 
networks, we have been able to examine both topical trends 
and knowledge flows in WebSci. By using mixed methods, 
a principle at the heart of WebSci, we have gained 
qualitative and quantitative insights into a disciplinary 
representation within WebSci, key themes and invisible 
colleges. 

WebSci as a field is very young: there is only 8 years 
of data that could be analysed in this paper. We argue that 
WebSci’s youth means such analysis is particularly 
important, helping both define and refine the community. 
Such analyses go beyond anecdotal evidence about the 
“look and feel” of the WebSci Conference series but they 
can act as diagnostic tools; and as such can inform 
decision-makers and drive strategic decisions based on 
hidden structures revealed by real data, for example, in 
terms of outreach to disciplines within WebSci (this may 
take the form of how we write CFPs, host workshops, 
invite keynote speakers, and co-locate events), our 
understanding and development of WebSci curricula, 
insight into changes in WebSci over time, allowing 
evaluation of the impact of past decisions and refining 
future activities accordingly. In the hands of Web Science 
experts, this information can help them maximise the 
efficacy and impact of WebSci or guide WebSci towards 
more interdisciplinarity, for example. 

We hope that this analysis of WebSci at an early stage 
will also be relevant for future work as researchers follow 
its evolution through the years. Finally, we also hope these 
insights will be of pragmatic use, e.g. for the organisers of 
future conferences.  
 

In addition to such contributions, this work provides 
insights in response to our questions from Section 1 that 
can be found in this paper as follows: 
• Evidence demonstrating some interdisciplinarity in 

WebSci research: Section 5.2. 
• Major themes in current WebSci research: Section 4.1. 
• Themes on which WebSci research builds: Section 5.1. 
• Areas affected by WebSci research: Section 5.1. 
• Key people in WebSci research: Section 4.2. 
• A map of WebSci’s intellectual structure and its 

evolution over time: Sections 4.1. and 4.2. 
 

To sum up, NLP showed the top 20 WebSci topics 
(and the shift in these in four years) as well as application 
contexts and the change in these in four years (notably, the 
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rise of the open data movement, close connections between 
different disciplines, and the consolidation of WebSci as a 
context of its own). Citation analysis has shown that the 
WebSci community is well connected and that underlying 
structures, such as invisible colleges, have formed around 
particular authors, such as Jure Leskovec and Wendy Hall, 
that also represent typical themes of WebSci such as 
network science, data science, data mining.  

The comparison of the knowledge flows over time in 
WebSci revealed that the knowledge base is getting denser 
and that there are less isolated networks in the WebSci 
Conference 2016, for example. This can be an effect of 
either a consolidation of the field or of the change in the 
conference organization that increased its attractiveness for, 
amongst others, social scientists. However, the islands that 
remain are interesting (often concerned with law, political 
science), especially in terms of reflection on the multi- or 
interdisciplinarity of WebSci and of introducing measures 
that encourage publication of interdisciplinary work at 
WebSci Conferences (if this is a strategic demand of the 
WebSci community at all).  

The two analyses give similar overarching results 
with respect to consolidation of the community and the 
focus on network and data science topics. One aspect of 
possible concern here is the lack of data suggesting 
centrality or connectedness of other disciplines, such as 
philosophy, law or psychology, have found evidence of 
interdisciplinary links that may be strengthening (Section 
5.2). 

To our knowledge, this is the first time NLP and 
citation analysis have been used together for analysing 
WebSci. They complement each other in certain ways: 
firstly, while NLP analysis takes a snapshot of the time 
span in which the dataset is based and the current WebSci 
themes, citation analysis allows an examination of the time 
before the dataset (the knowledge base of WebSci) and the 
time afterwards (the knowledge transfer from WebSci).  

Another way the two methods work together concerns 
bias. Participants of our 2013 survey were concerned the 
NLP-generated terms were biased towards technology: it is 
still unclear whether this apparent bias is in the nature of 
NLP or an actual characteristic of WebSci. One might 
speculate that we may use more different words in the 
humanities whereas (some) technology has more repeatable 
terminology. By supplementing NLP with other techniques 
such as citation analysis, we can hope to mitigate against 
any such bias. 

The improvement of the methods and the underlying 
dataset can also lead to more detailed results informing 
further actions. The NLP technique has already been 
applied in the Internet Science community, in which the 
identified application contexts have been used to structure a 

repository of design methods (Hooper et al., 2014); we 
hope to complement this with citation analysis in the near 
future.  

Further, future questions include how we might use 
NLP analysis to understand differences in disciplines 
according to context: for example, how might a discipline 
such as sociology appear in a WebSci corpus compared to 
within a pure sociology corpus? Issues include gaining 
datasets that are representative of a given domain: for 
example, the BAWE dataset at Insight has only 111 
sociology documents, many of which are short student 
essays. Of course, insights into this would be strengthened 
with parallel citation analyses of the different contexts in 
order to understand the knowledge flows and how they 
vary across contexts. 

Another topic is the impact of shifts in terminology 
over time, as discussed at CHI (Ibargoyen et al., 2013) or 
the increasing number of topics a conference deals with 
over time, as confirmed for Hypertext (Agarwal et al., 
2017). We plan to more thoroughly study authors and their 
effect on the knowledge map and intellectual structure of 
WebSci. Since Agarwal et al. (2017) have shown that 
~50% of authors of web research-related conferences are 
female, we want to study the relationship between gender 
and WebSci themes as well as citation networks. Further, it 
is interesting to investigate whether specific roles related to 
the conference organisation (e.g., program chair) or 
frequent publication also affect the knowledge map 
(Agarwal et al., 2017).  

The comparison of knowledge base and knowledge 
transfer with co-author networks will provide further 
details about the density and quality of citation networks, 
also expanding our knowledge about what authors outside 
the core WebSci community provide input to, or are 
affected by, WebSci research. The core community of 
WebSci can be found by calculating the overlap of authors 
that cite WebSci publications, that publish in WebSci 
publications, and that, finally, are cited by authors of 
WebSci publications. 
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