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Inductive Learning of Concept Representations from
Library-Scale Corpora with Graph Convolution

Lukas Galke1, Tetyana Melnychuk2, Eva Seidlmayer3, Steffen Trog4, Konrad U. Förstner5,
Carsten Schultz6, Klaus Tochtermann7

Abstract: Automated research analyses are becoming more and more important as the volume of
research items grows at an increasing pace. We pursue a new direction for the analysis of research
dynamics with graph neural networks. So far, graph neural networks have only been applied to
small-scale datasets and primarily supervised tasks such as node classiĄcation. We propose to
use an unsupervised training objective for concept representation learning that is tailored towards
bibliographic data with millions of research papers and thousands of concepts from a controlled
vocabulary. We have evaluated the learned representations in clustering and classiĄcation downstream
tasks. Furthermore, we have conducted nearest concept queries in the representation space. Our results
show that the representations learned by graph convolution with our training objective are comparable
to the ones learned by the DeepWalk algorithm. Our Ąndings suggest that concept embeddings can
be solely derived from the text of associated documents without using a lookup-table embedding.
Thus, graph neural networks can operate on arbitrary document collections without re-training. This
property makes graph neural networks useful for the analysis of research dynamics, which is often
conducted on time-based snapshots of bibliographic data.

Keywords: machine learning; representation learning; neural networks; graph mining

1 Introduction

The investigation of bibliographic data enables rich insights into research dynamics including
knowledge generation and diffusion, convergence of distinct scientiĄc areas and substitution
of some scientiĄc Ąelds with converged domains. New valuable knowledge is produced
within scientiĄc communities through collaboration of multiple actors [PHW12, WJU07].
A collaboration between researchers from different scientiĄc Ąelds fosters the diffusion
of knowledge of one domain into other Ąelds. The intensiĄcation of such collaborations
leads to blurring the boundaries between separate scientiĄc Ąelds and to emerging scientiĄc
disciplines [CBL10].
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Library-scale corpora of scientiĄc publications hold a large potential for automated analyses
of research dynamics. Machine learning techniques that beneĄt from large amounts of data
are essential for studying research dynamics. A major challenge in analysis of research
dynamics is to derive a meaningful similarity measure. So far, most existing approaches
rely on text-based similarity, co-citation analysis [NMF17, URU10], or scientometric
methods [Je16, JLC18]. In contrast, we exploit concept annotations, as present in corpora
of (scientiĄc) digital libraries to derive a similarity measure between concepts. We make
use of machine learning techniques to learn a low-dimensional continuous vector, i. e., a
representation for each concept, from which a similarity measure can be derived.

Problem Statement In a paper-concept graph, we study the novel problem of learning
representations for featureless concept nodes from paper nodes that have textual features.
We evaluate whether the resulting concept representations are meaningful, i. e. correspond
to human judgements, and useful in terms of their performance in downstream tasks.

Formally, we operate on a graph G = (P∪C,X, A), whose N vertices are either paper nodes
P or concept nodes C. Textual features of paper nodes are encoded in X ∈ R |P |×L , where
L is the textual feature dimension. Concept nodes have no features. Edges are encoded in
the adjacency matrix A such that Ai j > 0 when either two papers i, j < N have at least one
common author or a paper i is annotated with concept j. The task is to learn a parametrized
function fθ that maps paper X, A to concept representations C ∈ R |C |×d of size d. To enable
a fair comparison between methods, we keep d Ąxed because larger representation sizes
tend to lead to increased performance in downstream tasks [ERG19].

We call a method transductive if it relies on a static concept embedding given by a look-up
table. A method is inductive, when the concept representation C can be derived solely from
the input corpus X, A without conducting further training.

In this paper, we propose to use graph convolution [KW16a, Hu18, CZS18] to tackle this
problem. To enable unsupervised representation learning, we introduce a dedicated training
objective. We compare the resulting concept representations to the ones of transductive
DeepWalk and text-based latent semantic analysis [De90].

Our results show that the representations learned by graph convolutional networks are
similarly useful and meaningful as the representations learned by DeepWalk [PAS14]. At
the same time, our graph convolution approach has the advantage that it does not rely on a
static concept embedding but rather learns a mapping from associated papers to concept
representations. This turns graph convolution into a valuable approach for the analyses
of research dynamics. A once-learned model can induce concept representations for any
(sub-)set of annotated research papers such as annual snapshots. This is important for the
analyses of research dynamics, which we consider as future work.

In summary, our contributions are: (1) We apply state-of-the-art graph neural networks on a
dataset of 2.1M papers from the economics and business studies domain. (2) We introduce
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a dedicated, reconstruction-based training objective that allows unsupervised representation
learning of concept representation. (3) We show that the learned concept representations
are similarly useful and meaningful as the ones of DeepWalk, while not depending on a
static node embedding.

In the following Section 2, we give an overview of the related work. Then, we describe the
employed methods in Section 3, before we outline the experimental setup in Section 4. We
provide the results in Section 5, discuss them in Section 6, before we conclude.

2 Related Work

Salatino, Osborne, and Motta [SOM17] have shown that there is a strong correlation between
the pace of collaboration and the emergence of new topics. The same authors have then
developed an advanced clique percolation method [SOM18] to detect emerging topics at
the early stages and evaluate against a synthetic ground truth. Wu et al. [WVC16] have
studied the top 1% authors within the computer science domain and show that research
topics are increasingly inter-related. Duvvuru, Kamarthi and Sultornsanee [DKS12] link
keywords when they appear in the same scholarly article. The authors construct visual
keyword maps that may aid identifying emerging research areas. He et al. [He09] propose
to use citation data in conjunction with latent Dirichlet allocation to analyze topic evolution.
Tseng et al. [Ts09] compare several methods to detect hot topics.

Several approaches have been proposed that are targeted speciĄcally towards multi-relational
graphs such as knowledge graphs or linked data [Bo13, So13, Ya14]. For homogeneous
graphs, as faced in our context, the successful Word2vec algorithm [Mi13] has been trans-
ferred to graphs by sampling random walks, namely DeepWalk [PAS14]. Node2vec [GL16]
generalizes DeepWalk and further analyzes how the window size affects capturing more
structural or more semantic relationships. Yang, Cohen, and Salakhutdinov [YCS16] out-
line the difference between inductive and transductive learning settings and develop an
approach that is suited for both cases. All previously described methods rely on look-up
table embeddings and are, thus, not suited for inductive learning.

Numerous methods have recently emerged that generalize convolution to graphs [DBV16,
KW16a]. In GraphSAGE [HYL17], the authors explore different aggregation functions and
conduct experiments on representation learning in large-scale graphs by sampling adjacent
nodes. Velickovic et al. [Ve18] suggest to incorporate an attention mechanism for neighbor
aggregation. We refer to [Wu19] for a recent overview on graph neural networks.

3 Inductive Representation Learning with Graph Convolution

Graph convolution is an approach for graph-structured data that is capable of jointly
exploiting textual and structural features. Approaches based on graph convolution yield
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promising results on link prediction [KW16b], semi-supervised classiĄcation [KW16a],
and representation learning [HYL17]. A beneĄt of graph convolution is the possibility to
conduct inductive learning [YCS16, HYL17]. Inductive learning means that the textual
features from paper nodes are aggregated to compose a representation of the featureless
concept nodes. This property distinguishes this approach from other approaches that learn
a static node embedding such as DeepWalk [PAS14] as well as TransE [Bo13] and their
extensions. The inductive property allows computing concept representations on the basis
of any subset of the data and also for entirely unseen data [GVS19].

To make use of graph convolution, we Ąrst embed the textual features into a lower-dimensional
space by averaging word vectors h(0)

=
1
|x |

∑
t∈x W

(0)
t ,: , where x are the words of a document.

Subsequently, we make use of graph convolution to aggregate neighbor representations
after a nonlinear transform. The representation of node i in layer l is deĄned as:

h
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i
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where N(·) refers to the set of adjacent nodes and σ is a nonlinear activation function.
We follow [HYL17, Hu18, CZS18] and use mean aggregation ci j = |N(i)|. The weights
W

(0),W (1), b(1), . . . ,W (k), b(k), with k being the depth of the network, are then optimized
with respect to the training objective, which we describe in the following section.

Training Objective Unsupervised deep learning techniques exploit auxiliary objectives
such as auto-encoding [BCV13]. An auto-encoding objective refers to the task of recon-
structing the input. It may happen that the input-output space is high-dimensional. For
instance, consider the vocabulary of all words. In these cases, normalizing across all output
probabilities via softmax can become computationally expensive. Negative sampling [Mi13]
approximates the softmax by sampling few negative outputs. The task is then to distinguish
the true output among the negative samples. Due to its higher efficiency, negative sampling
often yields higher effective scores than the exact computation of the softmax [Mi13].

In the graph domain, link prediction is a common choice for learning node representations.
The representation is trained for predicting whether a link between two nodes exists. This
can be regarded as auto-encoding the adjacency matrix [KW16a]. Also here, negative
sampling can be employed to approximate the full softmax [PAS14, HYL17].

In our case, the goal is to learn concept representations for a controlled vocabulary. While
our models deal with millions of research papers, the dimension of the controlled vocabulary
is rather small with 5,688 concepts. We chose to use only concepts from the controlled
vocabulary as optimization objective. Thus, we can afford to compute the full softmax over
the concepts. We employ a linear decoder g : Rd → R |C | that uses the Ąnal representation
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of the graph convolutional network to reconstruct the respective concept. The loss function
is the softmax over the concepts:

Lrec(X, A, y) = − log
exp g( f (X, A))[y]∑
j exp g( f (X, A))[ j]

where f is a graph convolutional encoder, j iterates through all concepts and [·] denotes
index access. We sample a set of documents X which are connected over at most two hops
to the true concept y. The graph convolutional encoder f then constructs a low-dimensional
concept representation f (X, A), which is then used by g to reconstruct the true concept.
Since g is discarded after training, we deactivate its bias term such that all information for
prediction of the concept is drawn from the representation.

Neighbor Sampling and Skip Connections The originally proposed graph autoen-
coders [KW16b] and graph convolutional networks [KW16a] operate on the whole graph
in each optimization step. Storing the dense adjacency matrix is, however, not an option
when the dataset is of large scale. The authors suggest to construct mini-batches with
adjacent nodes. However, the receptive Ąeld still grows exponentially with the number of
layers. Hamilton et al. [HYL17] instead propose to subsample adjacent nodes such that
the growth factor is constant. Unfortunately, subsampling does not guarantee convergence
to the full graph convolution [CZS18]. A control variate approach has been proposed that
provably converges to the optimal, full graph convolution solution with only two sampled
neighbors [CZS18]. The authors propose to keep track of past activations to incorporate the
difference into the forward propagation path. Huang et al. [Hu18] propose a sampling ap-
proach that makes use of skip-connections to preserve second-order connections throughout
the sampling process. We adopt these advances and employ a graph convolutional network
with control variate sampling and skip-connections. We do not insert self-loops, such that
the inductive property is retained. After training, we use all neighbors for creating the Ąnal
representations.

4 Experimental Setup

In the following Section 4.1, we will describe the characteristics of the dataset and the
processing of textual and structural features. We described the employed baselines in
Section 4.2 and denote the selected hyperparameters in Section 4.3, before we describe the
evaluation measures in Section 4.4.

4.1 Dataset

The EconBiz dataset comprises more than 11M records describing scientiĄc publications
from the economics and business studies domain. About 5.8M of these records are well
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described by a controlled vocabulary and are used for our investigations. We Ąlter these
publications for English language and for annotations from the polyhierarchically-organized
Standardthesaurus Wirtschaft8. These annotations are created by professional subject
indexers. The resulting subset consists of 2.1M publications along with 5,688 subjects from
the controlled vocabulary. As we focus on concept representations, we collate the authorship
edges between authors and papers. We create an edge between two papers if the two papers
have an author in common. This effectively enlarges the size of the receptive Ąeld of the
models by one hop. This holds not only for graph convolution, but also for DeepWalk.

We consider the titles of the documents as textual features. We have shown in prior work
that using titles is competitive [Ge17] to full-text data for multi-label classiĄcation. When
the amount of available title data exceeds the amount of full-text data, classiĄers based
on title data can even outperform classiĄers based on full-text data [MGS18]. Thus, we
employ the larger amount of available title data. For preprocessing, we remove punctuation
and other non-alphanumeric characters, lowercase the text, and remove English stop-words.
We compose a vocabulary of the 50,000 most-common words.

4.2 Baselines: LSA and DeepWalk

As baselines, we consider DeepWalk [PAS14] as a representative for a purely structural
approach to graph representation learning along with latent semantic analysis [De90] as a
well-known text-based approach for document-level similarity.

Latent semantic analysis [De90, MRS08] (LSA) is a technique to embed text documents into
a lower dimensional space. The key idea of LSA is to factorize the term frequencyŰinverse
document frequency [SB88] weighted term-document matrix. We apply LSA on the titles
of the research papers [Ge17]. We employ truncated singular value decomposition to embed
each document in a low dimensional vector space. Finally, we compute the centroid for each
concept across those documents that are annotated with the respective concept.

DeepWalk [PAS14] is an approach for learning node embeddings in graph-structured data.
The algorithm samples random walks through the graph structure. For each node in the path,
its embedding is used to predict its predecessors and successors along the random walk.
The embedding is initialized randomly and updated according to hierarchical softmax loss.

4.3 Hyperparameters

LSA uses 5 epochs for singular value decomposition of the term-document matrix. For
DeepWalk, we generate 40,000 random walks for each concept node with a walk length of
3. We then run skip-gram optimization with window size 3 for 5 epochs over the generated

8 http://zbw.eu/stw
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random walks. The graph convolutional network uses two graph convolution layers. The text
embedding size is 256 along with 128 hidden units and 128 output units corresponding to
the representation size. We create mini-batches over concept nodes and sample 10 neighbors
for each of the two hops. We run one sampling step per concept over 400 epochs. We use
ReLU activation function and dropout [Ni14] with probability 0.5 within the GCN layers.
We optimize the training objective via Adam [KB14] and an initial learning rate of 0.001.
For a fair comparison, we Ąx the representation size to 128 for all models. Furthermore,
the parameters are set such that both GCNs and DeepWalk are given the same number of
sampled documents. We select a window size of 3 for DeepWalk such that the number of
considered hops is the same as for GCNs.

4.4 Evaluation measures

To evaluate the resulting representations, we compare the performance on two downstream
tasks: classiĄcation and clustering. For this purpose, we construct a dataset that maps each
concept to its respective subthesaurus. The models have never seen the underlying concept
hierarchy. As the thesaurus is organized in a polyhierarchic way, we use only those concepts,
which belong to exactly one subthesaurus. We are left with 3,113 concepts and 7 classes.

Supervised Clustering We conduct a clustering on top of the learned concept repre-
sentations with k-Means and k-Means++ as initialization strategy. We Ąx the number of
clusters to 7 corresponding to the number of classes. We evaluate the supervised clustering
metrics homogeneity, completeness, and V measure [RH07], as well as the adjusted rand
index [HA85]. Homogeneity yields values between 0 and 1, which assess to which extent
the clusters cover data points of the same class. Completeness is equivalent to homogeneity
but switches the true and the predicted labels. V measure is the harmonic mean between
homogeneity and completeness. The adjusted rand index is bounded between -1 and 1
and symmetrically assesses the similarity of a clustering result with the class labels. It
is permutation-invariant and adjusted against chance. We report the mean scores of 100
k-Means runs for the raw concept vectors and L2-normalized concept vectors.

Unsupervised Clustering To gain more insights on the clustering tendency of the learned
representations, we conduct a further unsupervised clustering experiment. Now we set the
number of clusters to 101 corresponding to the number of top-level concepts across the
7 subthesauri. We evaluate the unsupervised clustering metrics silhouette coefficient [Ro87]
and the Calinski-Harabasz criterion [CH74]. The silhouette coefficient is bounded between
-1 and 1 and gives the ratio between intra-cluster distances and the pairwise distances to data
points of the nearest cluster. The Calinski-Harabasz criterion compares the intra-cluster
variance against the global between-cluster variance in distances. We also report these
unsupervised clustering metrics for the supervised clustering experiments described above.
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ClassiĄcation We evaluate the performance in a downstream classiĄcation task. We
use the L2-normalized learned concept representations as input and the corresponding
subthesaurus as class label. As a common classiĄer we employ a support vector machine
with linear kernel. We conduct a ten-fold cross-validation and report the mean accuracy.

5 Results

Tab. 1: Silhouette score (S), Calinski-Harabasz score (CH), homogeneity (H), completeness (C), V
measure (V), and adjusted rand index (ARI) of clustering results on the learned concept representations
for LSA, DeepWalk, and GCNs. We provide the mean of 100 k-Means runs with 7 clusters on 3,113
concept representations. Higher is better.

Model Norm S CH H C V ARI

Random None 0.0062 13.83 0.0032 0.0030 0.0031 0.0000
Random Unit L2 0.0062 13.92 0.0033 0.0031 0.0032 0.0001
LSA None -0.0207 53.45 0.0030 0.0071 0.0042 -0.0041
LSA Unit L2 0.1284 96.44 0.0022 0.0025 0.0023 -0.0009
DeepWalk None 0.0194 124.80 0.2165 0.2496 0.2318 0.1852
DeepWalk Unit L2 0.0670 131.18 0.2930 0.2810 0.2869 0.1981
GCN None 0.0667 171.13 0.1845 0.1761 0.1802 0.1178
GCN Unit L2 0.0823 193.64 0.1992 0.1891 0.1940 0.1423

(a) (b) (c)

Fig. 1: t-SNE visualization (perplexity=30) of the L2-normalized learned representations by LSA (a),
Deepwalk (b) and GCN (c). The colors correspond to one clustering result with 7 clusters.

Table 1 shows the results for the supervised clustering task. For the supervised clustering
metrics, the Deepwalk representations achieve the highest scores of 0.2930 homogeneity,
0.2810 completeness, 0.2869 V measure and adjusted rand index 0.1981. The scores of GCN
representations are behind with a margin of 0.1 V-measure and 0.08 adjusted rand index.
LSA representations yield the highest silhouette coefficient while GCN representations
yield the highest Calinksi-Harabasz score. We provide a visualization of one clustering run
in Figure 1.
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Tab. 2: Mean silhouette score and Calinski-Harabasz score across 100 k-Means runs for the unsuper-
vised clustering experiments with 101 clusters on learend representations of 5,688 concepts.

Model Norm Silhouette Calinski-Harabasz

LSA None 0.0543 (SD: 0.01) 32.14 (SD: 0.26)
LSA Unit L2 0.0909 (SD: 0.01) 25.05 (SD: 0.13)
DeepWalk None 0.0383 (SD: 0.00) 52.50 (SD: 0.34)
DeepWalk Unit L2 0.0688 (SD: 0.00) 53.31 (SD: 0.13)
GCN None 0.0721 (SD: 0.00) 72.78 (SD: 0.24)
GCN Unit L2 0.1005 (SD: 0.00) 84.88 (SD: 0.20)

The results for the unsupervised clustering tasks with 101 clusters are shown in Table 2.
Here, the GCN representations lead to the highest silhouette and Calinski-Harabasz scores
of 0.1005 and 84.88, respectively.

In Table 3, we show the nearest-concepts for manually-selected concepts. The LSA repre-
sentations fail to yield consistently explainable responses. For example, Tax is closest to
Rehabilitation hospital and Abortion. The responses by GCNŠs and DeepWalkŠs representa-
tions are similarly acceptable: the closest concepts to Tax are in both cases all related to
taxes. In case of Germany, DeepWalk returns other European countries but also Comparison.
GCN yields parts of Germany along with Western Europe and Austria. We note that also
linear relationships are resembled by both GCN and DeepWalk. For instance, the sum of the
Tax vector and the Theory vector has Theory of Taxation among the two nearest concepts in
the representation space. Similarly, the addition of Economic growth and Theory leads to
having Growth Theory among the top two nearest concepts.

Table 4 shows the results for the downstream classiĄcation task. The non-normalized GCN
representation achieves the highest classiĄcation accuracy of 68%. The highest scores for
LSA and DeepWalk are 23% and 67%, respectively.

6 Discussion

Our results show that the representations of graph convolution are comparable to the
ones of DeepWalk. While DeepWalk has lead to higher scores in the clustering task,
GCNŠs representations have lead to higher scores in the classiĄcation downstream task. By
inspecting the representations with nearest neighbor queries, we could observe that both
DeepWalk and GCN correspond to human intuition, while LSA falls behind.

We have further analyzed the usefulness of the learned representations in an unsupervised
clustering task with 101 clusters, enforcing a more Ąne-grained setting. In this setting, the
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Tab. 3: Most similar concepts according to learned representations of LSA, DeepWalk, and GCN. The
responses are ordered by descending cosine similarity to the vector of the query concept. A plus in the
query column indicates that we use the sum of two concept vectors as query.

Query LSA DeepWalk GCN

Economic
growth

Management information system Economic adjustment Stages of growth model
Tobacco Economic policy Growth policy

Internet Usage Growth policy Resource wealth
Eurobond Economic development Kuznets curve

Automobile engine Economic reform Export-led growth

Tax

Rehabilitation hospital Fiscal administration Tax policy
Abortion Tax system Tax system

Biodiversity Tax policy Tax reform
Financial statement analysis Sales tax Taxation procedure

Association agreement Tax reform Tax burden

Germany

Debt crisis Italy East Germany
Mesoeconomics France Austria

Population policy Comparison West Germany
Complaint management Netherlands Lower Saxony
Unemployment theory Austria Western Europe

Vehicle

Pigouvian tax Transport research Sustainable mobility
Cargo shipping Transport economics Passenger transport

Cyclical unemployment Waste treatment Freight transport
Wage subsidy Battery Major electrical appliances

Financial Statement analysis Microsystems Traffic

Tax + Theory

Tax Tax Theory of taxation
Theory Theory of taxation Theory

Financial statement analysis Tax system Second best
Nursing profession Capital income Optimal taxation

Rehabilitation hospital Public economics Welfare economics

Economic
growth +
Theory

Economic growth Economic growth Growth theory
Banking services Growth theory Neoclassical growth model

Producer cooperative Economic model Unbalanced growth
Licence Theory Balanced growth

Laboratory Endogenous growth model Functional income distribution

GCNŠs representations have yielded the highest silhouette coefficient and Calinski-Harabasz
score.

The strong performance of the DeepWalk is to some extent surprising, as it does not use
any textual features but only relies exclusively on the structure of the author-paper-concept
graph. This, however, conĄrms the claim of the original work [PAS14] that meaningful
node embeddings can be derived without using node attributes.

There is no ground truth for pairwise similarity between concepts. We could therefore
evaluate only a small subset of nearest-concept queries manually. We, however, did create
a dataset which maps each concept to the respective subthesaurus. The hierarchical
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Tab. 4: Downstream classiĄcation performance with 3,113 concepts and 7 classes. We list mean and
standard deviation from a 10-fold cross-validation using a linear SVM classiĄer.

Model Norm Accuracy

LSA None 0.2345 (0.00)
LSA Unit L2 0.2181 (0.02)
DeepWalk None 0.6625 (0.04)
DeepWalk Unit L2 0.6708 (0.03)
GCN None 0.6813 (0.03)
GCN Unit L2 0.6496 (0.03)

relationships were never presented to the models, but only used for evaluation. The
assumption is that the learned representation should allow distinguishing the concepts on
a very broad level such as ŞEconomicsŤ, ŞBusiness economicsŤ, ŞGeographic NamesŤ.
A limitation of our study is that this categorization could be too broad to fully assess
similarity among concepts. Constructing a more Ąne-grained evaluation set is challenging
because the underlying thesaurus is polyhierarchic, i.e., a concept can have multiple broader
concepts. Our subthesauri-based evaluation set uses only concepts that belong to exactly
one subthesaurus, despite following all paths upwards in the hierarchy, which renders it
well-deĄned, even in the polyhierarchic case.

We have applied our concept representation learning method to a large-scale dataset with
2.1M publications from the economics and business studies domain. Our approach can
be transferred to any other dataset that is annotated with concepts. These concepts may
come from a controlled vocabulary as in our case but free-text author keywords can be used
instead. When scaling the number of concepts up, it can become necessary to switch from
softmax training to a negative sampling approximation. Our model is Ćexible in the sense
that it allows incorporating further edges such as the broader and narrower connections
between the concepts. For now, we held out these connections for evaluation purposes.

The inductive property of the graph convolution approach enables us to map any set of
annotated papers to concept representations without retraining. We can incrementally update
the concept representations in a time-dynamic setting. This is important because Ąne-tuning
pretrained, non-inductive, embeddings can be challenging: there are many options for
weighting between the old embedding and the updates. We envision that this property will
be crucial for analyses of the dynamics within and across research Ąelds in our future work.

7 Conclusion

We conclude that the representations learned by graph neural networks are comparable to
the ones learned by DeepWalk. Graph neural networks can induce representations for the
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featureless concepts from the titles of associated research papers. To make graph neural
networks applicable to library-scale bibliographic corpora, we have introduced a speciĄc
training objective for learning concept representations.

We have thoroughly analyzed the learned representations by conducting supervised and un-
supervised downstream tasks. Furthermore, we have manually inspected the representations
by conducting nearest neighbor queries. We have found that the nearest concepts are useful
in downstream tasks and meaningful for humans, even in cases, where the vectors of two
concepts are summed up.

Our Ąndings suggest that concept embeddings can be solely derived from the text of
associated documents without using a lookup-table embedding. In future work, we plan to
make use of further structural features such as concept hierarchies. We further plan to use
graph neural networks for dynamic research analyses based on annual snapshots of research
papers. By analysing the trajectories, we can then make claims about the convergence and
divergence of research areas.

Source Code: github.com/lgalke/INFORMATIK2019-concept-representation-learning
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