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Falk Böschen · Tilman Beck · Ansgar Scherp

Received: date / Revised version: date

Abstract Different approaches have been proposed in the past to address the chal-
lenge of extracting text from scholarly figures. However, until recently, no compara-
tive evaluation of the different approaches had been conducted. Thus, we performed
an extensive study of the related work and evaluated in total 32 different approaches.
In this work, we perform a more detailed comparison of the 7 most relevant ap-
proaches described in the literature and extend to 37 systematic linear combinations
of methods for extracting text from scholarly figures. Our generic pipeline, consisting
of six steps, allows us to freely combine the different possible methods and perform
a fair comparison. Overall, we have evaluated 44 different linear pipeline config-
urations and systematically compared the different methods. We then derived two
non-linear configurations and a two-pass approach. We evaluate all pipeline configu-
rations over four datasets of scholarly figures of different origin and characteristics.
The quality of the extraction results is assessed using F-measure and Levenshtein
distance, and we measure the runtime performance. Our experiments showed that
there is a linear configuration that overall shows the best text extraction quality on
all datasets. Further experiments showed that the best configuration can be improved
by extending it to a two-pass approach. Regarding the runtime, we observed huge
differences from very fast approaches to those running for several weeks. Our ex-
periments found the best working configuration for text extraction from our method
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set. However, they also showed that further improvements regarding region extraction
and classification are needed.
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1 Introduction

Scholarly figures are data visualizations in scientific papers such as bar charts, line
charts, and scatter plots [10]. Different research has been conducted to extract and
use text from figures like translating the text to Braille [18], re-engineering the raw
data from the figures [27], or for image search [29]. Many approaches follow a semi-
supervised text extraction approach [9,27]. However, semi-supervised approaches do
not scale with the amount of scientific literature published today. Thus, unsupervised
methods are needed to address the task of text extraction from scholarly figures. This
task is challenging due to the heterogeneity in the appearances of the scholarly figures
such as varying colors, font sizes, and text orientations. Nevertheless, extracting text
from scholarly figures, such as the examples shown in Fig. 1, is an important task as
the text provides additional information that is not contained in the papers [4]. To the
best of our knowledge, we have recently performed the very first comparison of the
different approaches for text extraction from scholarly figures [3]. The most likely
reason for the lack of a comparative study is that existing works come from various
different research areas. We extend our initial comparison by taking a commercial
OCR engine into consideration as well as evaluating non-linear configurations and a
two-pass approach. In addition, we describe the pipeline, the methods, and the con-
figurations in more detail and perform a brief runtime analysis.

In total, we have investigated 7 different pipeline configurations motivated by ap-
proaches described in the literature. Each configuration is a combination of six to nine
methods for the sequential steps in the extraction pipeline. Furthermore, we have cre-
ated 37 modifications of the best performing pipeline configuration to systematically
measure the influence of different methods applied in the text extraction pipeline.
Thus, in summary, we have compared 44 different linear configurations for text ex-
traction from scholarly figures in this paper. Additionally, we have evaluated two
non-linear configurations as well as a two-pass approach. We assess each pipeline
configuration with regard to the accuracy of the text location detection via preci-
sion, recall, and F1-measure. In addition, we evaluate the text recognition quality
using Levenshtein distance. Finally, we are comparing the runtime of the different
pipeline steps to find the most efficient configuration. We use four datasets in our
evaluation which we made available recently1: one from economics [2] (EconBiz),
one synthetically generated [19] (CHIME-S), one scanned and collected on the In-
ternet [30] (CHIME-R), and one created from figures of academic books provided

1 http://www.kd.informatik.uni-kiel.de/en/research/software/
text-extraction, last access: September, 2017



Text Extraction from Scholarly Figures: A Systematic Comparison 3

x

Axx

Mxx

Pxx

Bxx

.xxx

.Axx

.Mxx

.Pxx

.Bxx

Axxx

.FB_
.FBP

.FB&
.FBB

.FBF
.FFx

.FF.
.FFA

.FF/
.FFM

.FF_
.FFP

.FF&
.FFB

.FFF
Axxx

Axx.
AxxA

Axx/
AxxM

Axx_
AxxP

Axx&
AxxB

AxxF
Ax.x

AAxx

AMxx

APxx

SeasonWjbeginningWinWtheWsecondWhalfWofWtheWyearWindicatedvW

NW
of

WW
ha

le
sW

T
ak

en

NoteJW
TheWwhalesWcaughtWinW.FB_CW.FBPCWandWjustWoverWhalfWofW.FB&WjtotallingW_C_.FWwhalesvWwereWkunderW
objectionkWofWtheWIWCWban;WtheWrestWj./CPP/WwhalesvWareWunderWtheWkscientificWpermitkWexceptionpWW
AllWnumbersWcurrentWthroughWtheWendWofWtheWAx.xmAx..Wseasonp

SourceWWInternationalWWhalingWCommissionpWretrievedWMayW&CWAx.ACWfrom
WWWWWWWWWWWWWWWhttpJmmwwwpiwcofficeporgmconservationmtable_permitphtmWWand
WWWWWWWWWWWWWWWhttpJmmwwwpiwcofficeporgmconservationmtable_objectionphtm

SpermWjNpWPacificWuWCoastalv

MinkeWjAntarcticv
MinkeWjNorthWPacificv

BrydesWjNpWPacificWuWCoastalv

SeiWjNorthWPacificv

MinkeWjCoastalv

FinWjAntarcticv

WhalingWinWJapanWSinceW.FB_

more SAT takers

more ACT takers

More senior SAT test takers

More senior ACT test takers

Senior Class of 2015
SAT vs. ACT Preference Map

46

3

3

2

2

White Hispanic Pacific Islander Black Asian

meta-chart.com

Fig. 1 Exemplary scholarly figures (Source: Wikimedia Commmons (Public Domain))

by the publisher DeGruyter2 (DeGruyter). We manually labeled the EconBiz dataset
and DeGruyter dataset, while the CHIME datasets were created in 2006 by the Center
for Information Mining and Extraction, School of Computing, National University of
Singapore. In summary, the contributions of the paper are:

(i) We conduct a systematic comparison of in total 44 linear configurations of a
generic pipeline for text extraction from scholarly figures. Each configuration
consists of a combination of six to nine methods from a total of 22 different
methods that we have implemented.

(ii) We derive two non-linear configurations and a two-pass approach after analyzing
the linear configurations and we compare them with the best linear configuration.

Please note that we also have made available3 the implementation of our linear pipeline,
including 21 methods, as well as 32 linear configurations for text extraction from
scholarly figures that we compared. The subsequent section discusses the related
work in the field. It serves as the foundation for defining our generic pipeline and
the different methods used in the pipeline steps, as described in Section 3. In Sec-
tion 4 we introduce the linear, non-linear, and two-pass configurations that we chose
for evaluation. Section 5 describes the four datasets and the measures used in our

2 http://www.degruyter.com/, last access: September, 2017
3 http://www.kd.informatik.uni-kiel.de/en/research/software/

text-extraction, last access: September, 2017
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evaluation. The results are described in Section 6 and discussed in Section 7 before
we conclude in Section 8.

2 Related Work

Text extraction from scholarly figures is addressed by research groups from different
domains. Thus, one finds different terms that basically describe the same concept,
such as information graphics [4], figures [10], charts [16], diagrams [6], and different
variations of them. In the following, we will commonly denote them as scholarly fig-
ures or just figures. First, we discuss the relevant related work on text extraction from
scholarly figures. Subsequently, we consider cartographic maps, domain-specific ap-
proaches from life sciences and chemistry, as well as briefly discuss approaches for
making figures accessible to visually impaired users as well as applying text extrac-
tion on natural photos.

Scholarly Figures An early work on text extraction from scholarly figures is by
Huang et al. [15,16]. Their text extraction pipeline starts with a Connected Compo-
nent Labeling (CCL) [25] that generates components of coherent text elements and
graphics elements. In a subsequent step, these elements are separated by applying a
series of filters. In the next step, the text elements are grouped using a derivation of
Newton’s formula for “Gravity” from classical physics. The authors claim that this
method is capable of separating text at different orientations into different groups of
text elements. Optical character recognition (OCR) is applied on these text groups
and the recognized text is classified into strings and numbers. Finally, the recognized
text is manually corrected in order to have a clean assignment to the corresponding
graphical elements. Sas and Zolnierek [26] propose a three-stage approach for text
extraction from figures. Starting with a conversion of the input image to gray-scale,
the authors apply filtering operations, binarization, and CCL to generate coherent re-
gions. Regions are filtered by empirical thresholds and classified into text and graphic
elements using a decision tree. Tesseract4 is used for OCR. Besides normal orienta-
tion, the input to the OCR engine is also rotated at a 90◦ angle to capture vertical text
elements such as labels of the y-axis. Finally, the text detection is verified by assess-
ing the number of special characters recognized in the text regions. Unfortunately, the
authors did not assess the quality of their OCR results. Finally, we have developed
a pipeline called TX for unsupervised text extraction from scholarly figures [1–3].
The TX pipeline uses an adaptive binarization method based on Otsu’s method [24].
Subsequently, CCL is applied to extract coherent regions. A few heuristic rules are
applied before the regions are clustered using DBSCAN in order to separate text
elements from graphical elements. A Minimum Spanning Tree (MST) clustering is
applied to detect single text lines. The orientation of these text lines is computed us-
ing a discrete Hough transformation and each line is rotated into horizontal mode in
order to send it to a standard OCR engine. Here, the Tesseract OCR engine is used.

Cartographic Maps Cartographic maps use text elements to show city and street
names, regions, and landmarks. An early work on text extraction from maps is the

4 https://github.com/tesseract-ocr/, last access: September, 2017
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approach by Deseilligny et al. [11] which relies on CCL for extracting regions. How-
ever, in contrast to the works on scholarly figures, Deseilligny et al. normalize each
region in order to apply a rotation invariant character recognition. Multiple character
hypotheses are generated for each region and those hypotheses are selected which
create coherent strings and follow specific syntactic rules. A more recent approach is
the semi-automatic text extraction proposed by Chiang et al. [9]. In contrast to most
of the other works, the input image is not converted to gray-scale. Instead, a color
quantization algorithm is applied. The authors separate text elements from graphical
elements using a run-length smoothing algorithm based semi-automatic extraction
that requires a positive and a negative example for each text-color/background-color
combination. Text lines are detected by applying dilation operators on the connected
components. The orientation of each line is estimated using a Single String Orienta-
tion Detection algorithm, which is based on morphological operations. The algorithm
evaluates all possible orientations of text line candidates in a brute-force manner. The
text line is rotated to horizontal orientation and ABBYY FineReader5 is applied for
OCR. After the OCR phase, a recognition confidence score is computed to filter the
results.

Region
Extraction

Region
Classification

Line
Separation Pre-Processing

Optical
Character

Recognition
Post-Processing

1 2 3 4 5 6

TextFExtractionFPipelineFigure Text

Fig. 2 Generic linear pipeline for text extraction from scholarly figures abstracted from the literature

Domain Specific Text Extraction An algorithm for text detection in biomedi-
cal images, as part of the Yale Image Finder, was proposed by Xu and Krautham-
mer [29]. The authors first detect and remove so-called layout elements, followed
by a binarization, median filter, and edge detection with the Sobel operator. The text
region extraction, based on horizontal and vertical histogram projection analysis, is
conducted on the edge image. This is performed recursively until the image cannot
be split any further. During this recursive processing of the regions, heuristic filters
are applied to only subdivide those regions that contain text and discard the others.
Lu et al. [22] developed a retrieval engine for scholarly figures in chemistry. First,
the input image is converted to gray-scale and an edge image is computed. A Hough
transformation is applied to the edge image in order to compute a feature vector. The
feature vector is used to classify the input in order to find 2D plots. Only 2D plots
are further processed. First, the 2D plot is binarized. Then, the axes are detected and
the plot is segmented by applying CCL. The text detection is based on fuzzy rules
and includes a method for separating overlapping characters. The recognition of text
strings is conducted using GOCR6.

5 http://www.abbyy.com/ocr-sdk/, last access: September, 2017
6 http://www-e.uni-magdeburg.de/jschulen/ocr/index.html, last access: Septem-

ber, 2017
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Access for the Visually Impaired Another approach that requires text extraction
from figures is the work by Jayant et al. [18]. Their goal is to translate figures into
Braille language for the visually impaired. First, a color reduction is conducted with
Adobe Photoshop. Subsequently, the figure is manually classified into a set of prede-
fined figure types. CCL is applied to the figure to extract regions. In order to separate
text elements from graphical elements, the authors manually train a Support Vector
Machine (SVM) per figure type as well as per book where the figures were taken
from. Thus, the authors make the assumptions that all figures of a certain type have
a similar design throughout a single book. Subsequently, a separation into text line
structures is performed, using a so-called label training algorithm which uses a Min-
imum Spanning Tree with manually created test data. The text line orientation is
estimated by minimizing the perpendicular squared distance. Finally, OCR is con-
ducted with Omnipage7 or ABBYY FineReader. Carberry et al. [5] analyze figures,
especially bar charts, pie charts, and line charts, to generate textual summaries for
visually impaired users. Their Visual Extraction Module (VEM) claims to be capa-
ble of extracting text elements and their position [7]. However, the paper does not
provide technical details on how this is achieved. In their current work [5], manually
generated datasets are used instead of the VEM, which may indicate that the VEM
does not generate an output of sufficiently high quality.

Approaches on Natural Photos Besides text extraction from scholarly figures and
related images, there is also research regarding OCR on natural photos. The research
in this area has several interesting ideas to solve the OCR problem. For example, Ol-
szewska [23] presented a template-matching approach to extract numbers of arbitrary
position and orientation in the captured 3D space in images using contour informa-
tion. Other approaches show promising results as well [12,21]. However, the works
for text extraction from natural photos often make specific assumptions about the dif-
ference in the appearance of text and background/graphic elements. For example, the
assumptions that text elements are generally smaller than graphic elements [14], that
text elements can be identified via their edges [21], or that text has a unique or more
homogeneous color [14]. These assumptions often do not hold for scholarly figures
like charts, diagrams, or graphics.

3 Generic Pipeline for Text Extraction

Based on the related work, we derived a generic pipeline for text extraction from
scholarly figures. The pipeline consists of six steps as illustrated in Fig. 2. Each
step can be implemented by different methods. A combination of methods along the
pipeline steps is called a configuration. We can perform a fair comparison of differ-
ent approaches and methods by comparing different configurations of the pipeline.
Below, we provide a brief summary of the different steps that we identified for the
generic pipeline. A formalization of the pipeline can be found in our earlier publica-
tion [1]. This pipeline is the basis for our linear configurations as well as, in a mod-

7 https://www.nuance.com/print-capture-and-pdf-solutions/
optical-character-recognition/omnipage/omnipage-server-for-developers.
html, last access: September, 2017
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pipeline step

ified form, for our non-linear and two-pass configurations. In Section 4, we discuss
the different configurations of the pipeline assembled from the methods described
below. An overview of the possible linear configurations can be found in Fig. 3.

3.1 Definition of the Generic Pipeline

Please note, for describing the steps of our generic pipeline we use the following
terminology: We refer to scholarly figures as images since it is the accepted term
in computer vision. A region is a set of pixels of an image. Each region constitutes
either one or sometimes multiple text characters or graphical symbols. A text line or
text element is a set of regions representing text.

The input to the pipeline is a (color) image of a scholarly figure and the output are
text elements together with their position, dimension, and orientation. The six steps
are as follows: (1) The first step extracts regions from an image. Thus, a decision
on pixel-level has to be made about what part of the image belongs to a region and
what is background. A common algorithm for this task is Connected Component
Labeling (CCL) on a binarized image. (2) In the second step, the previously computed
regions are classified either as text or graphics. The regions classified as graphics are
ignored in the subsequent steps. (3) The third step computes text lines from the text
regions provided by the previous step. It is necessary to compute text lines since
most OCR engines work only on horizontal text input and the orientation can be
estimated best from single text lines. (4) The fourth step estimates the orientation of
the text lines and performs other pre-processing that a specific OCR engine might
need. Besides rotating text lines to horizontal orientation, one may need to scale text
lines to a sufficiently high resolution or remove noise. (5) Subsequently, the fifth step
actually performs the Optical Character Recognition (OCR). A commonly used OCR
engine is Tesseract, developed by Google and used in the Google Books project.
(6) Finally, post-processing is applied to the OCR results. For example, the OCR
output is corrected using some heuristics.
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3.2 Methods of the Six Pipeline Steps

For each step of the generic pipeline, we compare different methods motivated by
approaches described in the literature. Below, we describe the methods selected along
the steps of the generic pipeline as shown in Fig. 2. The large number of methods
allows only a brief description of each method, but further details can be found in the
references.

3.2.1 Step (1): Region Extraction

The region extraction step consists of two sub-steps: First, the input is transformed
from color space into one or multiple binary images as described below. Second, the
actual region extraction is conducted using one of two approaches that we identified
in the literature. Overall, the output of this step is a set of binary regions where each
region represents one or more text characters or graphical symbols.

Binarization of Color Images Given a color image, one can convert it directly
to multiple binary images. An alternative is to use an intermediate transformation to
a grey-scale image, which is then converted to the binary output. For directly con-
verting a color image to multiple binary images, a so-called Color Quantization
method can be used. Color Quantization performs a clustering over the color space.
For each cluster, a representative color is chosen and each color in the original im-
age is replaced by the color of the cluster closest to it. Finally, the image is split
into multiple binary images, one for each color, where all pixels that have the spe-
cific color are set and the others are not. The color quantization method is inspired
by the work of Chiang [8], Fraz [12], and Jayant [18]. The RGB to Grey via Lu-
minance method is commonly used to create an intermediate grey-scale image [2,
15]. It uses the conversion formula Y = 0.2126R+0.7152G+0.0722B to weight the
color components red (R), green (G), and blue (B) to the luminance value Y based on
human perception. Subsequently, the grey-scale image is binarized using one of the
following methods: Otsu’s Method [24] separates two regions by finding the thresh-
old that maximizes the inter-class variance. One problem with Otsu’s method is that
it only computes one threshold (or multiple if the Multi-Otsu method is used) which
are applied globally on the entire image. This leads to problems with local inhomo-
geneities like varying text-color/background-color combinations. In order to address
this challenge, an Adaptive Otsu Binarization method [2] was developed that com-
putes multiple thresholds to create a locally adaptive binarization. This is achieved by
subdividing the image into smaller parts and recursively applying Otsu’s method to
compute new thresholds. Niblack’s Method and its variants are other options for bi-
narization [20]. We tested all versions of Niblack’s Method as described by Khurshid
et al. [20] with the specified parameters. The modified version of Sauvola performed
best during our preliminary tests. Thus, we compare it with the two Otsu variants.

Region Extraction from Binary Images Given a binary image, we can apply one of
the following two methods for region extraction: The most common method [2,15,
26] is Connected Component Labeling (CCL) [25]. The CCL algorithm iterates
over the whole image and assigns each pixel to a region by taking the assignment of
the adjacent pixels into account (a 4- or 8-pixel-neighborhood). As an alternative, we
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use Xu and Krauthammer’s [29] Pivoting Histogram Projection method for region
extraction. Here, first, an edge image of the binary image is computed. The edge im-
age’s pixels are alternately projected on the x- and y-axes and the image is split after
every projection at the minimal point(s) of the histogram into multiple sub-images.
Each sub-image is further processed while alternating the direction until no further
split is possible. Thus, one obtains multiple rectangular areas, which are converted
into regions by taking all foreground pixels of each region from the binary image.

3.2.2 Step (2): Region Classification

The output of the region extraction in Section 3.2.1 has to be classified into text el-
ements and graphical elements. For each region, we compute a feature vector which
is composed of the center of mass x-/y-coordinates, width and height, and area-
occupation-ratio (the number of foreground pixels of the bounding box divided by
the area) that are used to group the regions into text and graphics. Heuristic Filter-
ing methods are commonly applied as pre-processing to help separate text elements
from graphical elements [2,26]. For example, very small regions typically consti-
tute noise, large regions are graphical elements like axes, and average-sized regions
refer to characters. Another approach is to consider the coverage of the bounding
box of a region. Heuristic filters are parameterized and thus require a suitable choice
of parameter values. For region classification, unsupervised density-based clustering
algorithms like DBSCAN can be used to group regions [2]. Since text is normally
denser and of a different size than graphic elements, it can be separated from graphic
elements using DBSCAN. Another method to distinguish between text and graphics
is the graph-based Minimum Spanning Tree (MST) clustering algorithm [18]. Af-
ter constructing the tree, the clusters are created by splitting the graph, i. e., removing
edges. There are multiple possibilities on how to split the tree. In our experiments, we
consider splits at inconsistent edges, i. e., edges that are longer than the local average
edge length. Huang et al. [16] proposed Grouping Rules based on Newtons Grav-
ity Formula from classical physics. The formula computes a threshold which defines
whether two regions are grouped together. This results in text elements, each repre-
senting a single text line. Finally, the Morphological Method by Chiang et al. [4,9]
is applied to the individual pixels of the image and uses morphological operations to
merge characters into words. Thus, it also generates text elements.

3.2.3 Step (3): Separation into Text Lines

The methods for determining text elements in the previous step can result in clusters
of regions of various shape. Thus, the text elements may contain text of different
orientation. This is problematic for standard OCR engines as they require text at a
horizontal orientation. Therefore, it is necessary to split the text elements into single
text lines, since one can only reliably estimate the orientation for single lines of text.
One method to separate text elements into text lines is to apply an Angle-Based
MST [2] clustering. The MST is constructed over the centers of mass of the regions in
a cluster. The assumption is that characters of a text line are closer to each other than
characters from different text lines. Thus, most edges of the MST constitute a single
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line while only a few edges connect across different text lines. Edges connecting
different lines will have orientations that differ strongly from the main orientation
and can therefore be easily removed.

3.2.4 Step (4): Text Line Orientation

As said above, standard OCR engines require that the text of the input image has a
horizontal orientation. In this step, the single text lines produced in the previous step
are analyzed with regard to their orientation. We compute the orientation of each line
using one of the following methods: The first method uses the Hough Transforma-
tion [17] to calculate the orientation [2]. The method transforms all center of mass
coordinates of the characters of a text line into Hough space and the maximal value
in this Hough space represents the main orientation. Since text lines can have only
an orientation between -90 and +90 degree, we can limit the Hough space compu-
tation to this interval. Another method to estimate the orientation is to minimize the
Perpendicular Squared Distance of the bounding box of each text line [18]. The
Single String Orientation Detection (SSOD) [9] method assesses different orienta-
tion candidates by rotating the text elements and applying morphological operations
on its regions. The orientation at which the largest pixel area remains after applying
the operators is selected as the orientation of the text element. Subsequently, we rotate
the text lines into the opposite direction to bring them into horizontal alignment.

3.2.5 Step (5): Optical Character Recognition

We now have individual text lines at a horizontal orientation. Thus, in this step, we
can apply standard Optical Character Recognition (OCR) engines to extract the text.
We analyzed different OCR engines mentioned in the related work. We have se-
lected Tesseract and Ocropy8 as they are freely available and frequently updated. We
also select the commercial OCR engine ABBYY FineReader for comparison. The
OCR engine Tesseract provides trained models for different languages, where we
choose English. We are not using Tesseracts Layout Analysis capabilities for remov-
ing graphic elements and conducting line detection since it only works on horizontal
text. Tesseract has been used in the past for text extraction from scholarly figures [2,
26]. Ocropy is a collection of open source tools for document analysis and OCR. It is
designed for character recognition from full-page documents like Tesseract. Ocropy
has several constraints regarding parameters like minimum image width and height
in order to assure good results. Thus, we modify the input image to fulfill the required
thresholds by properly scaling the text lines. Like Tesseract, the OCR engine Ocropy
provides a pre-trained model for the English language. The commercial OCR engine
ABBYY FineReader is widely used and offers SDKs for various platforms besides
ready to use desktop applications. Similar to Tesseract, ABBYY FineReader is able
to recognize several languages, but we limited the recognition language to English.
A license is required to use the ABBYY FineReader and ABBYY provided us with
a developer license for the ABBYY FineReader 11 for our experiments. Similar to
Tesseract, ABBYY FineReader can only recognize horizontal text.

8 https://github.com/tmbdev/ocropy, last access: September, 2017
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3.2.6 Step (6): Post-Processing

The last step of the pipeline conducts potential corrections of the textual output of
OCR engines. Here, several approaches exist: For example, one can use dictionar-
ies [28] to correct the OCR output. Since text in scholarly figures is very sparse and
often contains abbreviations and numbers, one cannot apply standard dictionaries.
A much simpler heuristic-based correction is the Special Character Filtering per
single Character method. It removes all special characters from the output, i. e., all
characters that are not a white space, number, or character from a-z or A-Z. This
makes sense because recognition errors often appear in form of special characters
like dots or dashes in the output. Sas and Zolnierek proposed a Special Character
Filtering per String [26], which is a modified version of the previous method. Here,
complete text elements are removed if they contain too many special characters. An-
other post-processing method is the Quantitative OCR Assessment by Chiang et
al. [9]. The main idea is to reuse knowledge from previous steps of the extraction
pipeline by comparing the number of regions that went into the OCR process with
the number of characters that were recognized from them. If the difference is above
a certain threshold, one can assume that one or multiple recognition errors happened
during the OCR process. While Chiang’s approach also takes recognition confidence
information on character level from ABBYY FineReader into account, one cannot,
in general, assume that this information is available from all OCR engines. Thus,
the implemented method performs its post-processing only based on the difference
between the number of regions before and the number of characters after the OCR
step.

4 Pipeline Configurations

From the methods defined in the previous section, one can create various pipeline
configurations. Some methods are restricted in how they can be combined as illus-
trated in Fig. 3. Section 4.1 discusses the linear configurations that are motivated from
the literature, followed by a description of the systematically modified linear config-
urations. Section 4.2 presents the non-linear configurations and Section 4.3 describes
the two-pass configurations.

4.1 Linear Pipeline Configurations

In the following, we describe the configurations motivated from the literature as well
as the systematic modifications to them.

Configurations motivated from the Literature

There are seven pipeline configurations that are motivated from the literature. Each
configuration is identified by (x), an acronym created from the contributing author(s)
and the publication year. The first configuration (SZ13) is inspired by the work of Sas
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and Zolnierek [26]. It uses Otsu’s method for binarization, followed by CCL. Sub-
sequently, it applies heuristic filtering similar to the original approach. The decision
tree used by Sas and Zolnierek is replaced by the line generation approach based on
MST. The rationale behind this is that a decision tree is a supervised method while
MST is unsupervised. This configuration does not use any method for orientation
estimation from step 4 of the pipeline since the original work by Sas and Zolnierek
does not have such a feature. Tesseract is used as OCR engine since it was also used
in the original paper. In the post-processing step, all strings that contain too many
special characters are removed. The second configuration (Hu05) is based on the
work of Huang et al. [16]. After region extraction using Otsu binarization and CCL,
the Heuristic Filter method is applied, and the regions are grouped using the Grav-
ity method. Finally, the grouped regions are processed with Tesseract. Based on the
work of Jayant et al. [18], configuration (Ja07) starts with Otsu’s method and CCL.
Subsequently, it clusters the regions using an MST and approximates the orientation
by minimizing the perpendicular squared distance. Text recognition is achieved by
applying Tesseract.

Different from the previous configurations, the fourth configuration (CK15) – in-
spired by Chiang et al. [9] – uses Color Quantization to generate multiple binary
images, followed by a CCL. Subsequently, it applies heuristic filtering and Morpho-
logical Clustering on the regions. This step differs from the original paper, where
the relevant color levels were manually selected. Thus, we assess all extracted bi-
nary images. The orientation of each cluster is estimated using the SSOD method,
followed by Tesseract OCR, and quantitative post-processing. Similar to the previous
pipeline configuration, the fifth configuration (Fr15), inspired by Fraz et al. [12] from
the photo processing domain, starts with Color Quantization and CCL. The original
approach uses a supervised SVM to form words, which we replaced with unsuper-
vised methods from our methods set. The extracted regions are filtered and DBSCAN
is applied, followed by an MST clustering into text lines. The orientation of the text
lines is calculated using Hough method and the text is recognized using Tesseract.
All configurations so far use CCL to extract regions.

The sixth configuration (XK10), motivated by Xu and Krauthammer [29], uses the
pivoting algorithm after binarization with adaptive Otsu. The regions are filtered us-
ing heuristics and grouped into lines using DBSCAN and MST. This differs from the
original work, which only applied heuristic filtering to remove the graphic regions.
The reason behind this is that the authors only aimed at finding text regions and not
to recognize the text. Thus, we filled the rest of the pipeline steps with suitable meth-
ods. The orientation of each line is estimated via Hough and OCR is conducted with
Tesseract.

Finally, configuration (BS15) resembles our own work [2]. It uses adaptive Otsu
for binarization and CCL for region extraction. Heuristic Filtering is applied to the
regions and DBSCAN groups them into text elements. Text lines are generated using
the angle-based MST approach and the orientation of each line is estimated via Hough
transformation, before applying Tesseract’s OCR.
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Configurations resulting from Systematic Modifications

In order to evaluate the influence of the individual methods, we chose the pipeline
configuration (BS15) as the basis for our systematical modifications, since it is the
most recent development for the task of automatically extracting text from scholarly
figures and showed the best performance of the seven configurations from the liter-
ature. The systematic modifications are organized along the six steps of the generic
pipeline in Figure 2. Each of the systematic configurations has an identifier (BS-XYZ)
based on the original configuration, where X is a number that refers to the associated
pipeline step and YZ uniquely identifies the method. We systematically modified the
configurations in the following way:

In the first step, the binarization and region extraction is evaluated with the fol-
lowing configurations: (BS-1NC) differs from (BS15) by using Niblack instead of
adaptive Otsu for binarization. Configuration (BS-1OC) uses the third option for bi-
narization, Otsu’s method. Color quantization is combined with the pivoting region
extraction in (BS-1QP). The second and third step for region classification and gen-
eration of text lines is assessed with the following configurations: Configuration (BS-
2nF) differs from the base configuration by not applying the optional heuristic fil-
tering method. Configuration (BS-2CG) uses the Gravity Grouping instead of DB-
SCAN and MST. Configuration (BS-2CM) applies MST to cluster regions and create
text lines. Morphological text line generation is used in configuration (BS-23M). The
following two configurations are used to evaluate the other options for estimating the
orientation of a text line: Configuration (BS-4OP) uses the Perpendicular Squared
Distance method and configuration (BS-4OS) uses the Single String Orientation De-
tection method to estimate the orientation. In all configurations, both open source
OCR engines are used to generate the results. We add an identifier to a configura-
tion when referencing a configuration with a specific OCR engine. Furthermore, we
assess the direct impact of the OCR engine on the recognition results with configura-
tion (BS15-O), which only differs with respect to the OCR method from the base con-
figuration by using the Ocropy OCR engine instead of Tesseract. Similarly, we have
evaluated most of the systematic configurations as well as the base configuration with
the ABBYY FineReader OCR engine. The sixth and last step of the pipeline is the
post-processing. We use three configurations to evaluate the different post-processing
methods: First, configuration (BS-6PC) uses the Special Character Filter method for
post-processing. The second configuration (BS-6PS) uses the String Filter method for
post-processing. The third configuration (BS-6PQ) uses the Quantitative Assessment
method for post-processing.

4.2 Non-Linear Pipeline Configurations

Our text-extraction framework is designed as a linear processing pipeline as described
in Section 3.1. However, researchers have also successfully applied non-linear sys-
tems when processing images [13]. The idea is to improve the performance by reusing
information about the structure and content of the image, which is gained in early
steps of the pipeline and use this information in later steps or by repeating earlier
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steps. This is not possible with the linear configurations discussed so far. Thus, we
analyzed the pipeline to identify the options for non-linear configurations. A very
important information is the location of text inside a figure. Therefore, one may re-
fine the results from certain parts of a figure if the quality of the recognition in the
OCR step makes it necessary. Our non-linear configurations are based on the previ-
ous best configuration (BS-4OS) which is also used for comparison. The non-linear
configurations check the recognized text after step 5 of the pipeline for special char-
acters. If such a character is present in the recognized text string, then the pipeline
is repeated on the processed sub-image of the initial input image. We consider two
different kinds of pipelines for repetition which are described next.

An important step for text extraction is the correct binarization of the image,
which is part of the first step of our pipeline. Our first non-linear configuration (BS-
4OS/R1) aims at improving the results by applying the binarization a second time
onto the already extracted text regions. Thus, it repeats the binarization step before
executing the OCR step a second time. Here, we use standard Otsu binarization and
not the adaptive Otsu, since we have only small parts of the original image.

The second non-linear configuration (BS-4OS/R2) is also based on configura-
tion (BS-4OS). The configuration repeats the whole pipeline on the extracted text
regions which contain special characters. Thus, we assess the text output after the
OCR step and apply the region extraction, region classification, separation into text
lines, and text line orientation estimation again.

4.3 Two-Pass Pipeline Configurations using ABBYY FineReader OCR

Correctly extracting rotated text from figures is one of the main challenges for a
good extraction result. We conducted several experiments using the best linear con-
figuration (BS-4OS(Ocropy)) and the standalone ABBYY FineReader separately to
compare the OCR output of figures containing only horizontal text and figures with
only rotated text. Based on the DeGruyter and EconBiz datasets (see Section 5.1)
we created two different datasets with only horizontal and only rotated text using the
orientation information of the gold standard. For the dataset containing only figures
with rotated text, we removed every text area with an angle between −2 and 2 de-
grees. Accordingly, for the other dataset, all text areas that do not have an orientation
in the range of −2 to 2 degrees were removed.

The results showed that the ABBYY FineReader OCR engine can extract hori-
zontal text very well. However, graphic elements and rotated text are problematic and
are falsely recognized. For the rotated text, the linear configuration (BS-4OS(Ocropy))
achieves better results. Detailed results of the experiments are shown in Table 1.
Please refer to Section 5.2 for an explanation of the measures used for comparison.

These results suggest a two-pass processing pipeline that first applies ABBYY
FineReader to extract the horizontal text and then uses the pipeline to extract the
rotated text. After extracting the horizontal text, the figure is manipulated by filling
the corresponding bounding box of the text area with the color white. Then, the best
linear configuration (BS-4OS(Ocropy)) is applied on the manipulated figure to ex-
tract the remaining text. However, a decision has to be made about which output of
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Table 1 F1-measure (F1D) for Text Location Detection, F1-measure (F1C) for Text Element Coverage,
Average Local Levenshtein (AV GL), Average Global Levenshtein (AV GG), and operations per character
(OPC) for standalone ABBYY FineReader and the configuration (BS-4OS) using Tesseract as well as
Ocropy as OCR engine.

Config. F1D(SD) F1C(SD) AV GL(SD) AV GG OPC
only horizontal text

ABBYY FineReader 0.75 (0.20) 0.63 (0.16) 2.02 (2.61) 44.86 0.28
BS-4OS (Tesseract) 0.70 (0.20) 0.64 (0.12) 4.03 (3.21) 70.26 0.51
BS-4OS (Ocropy) 0.68 (0.21) 0.55 (0.18) 3.28 (3.18) 69.57 0.49

only rotated text
ABBYY FineReader 0.27 (0.21) 0.33 (0.15) 12.59 (9.43) 84.97 1.58
BS-4OS (Tesseract) 0.49 (0.29) 0.64 (0.21) 17.46 (14.74) 82.01 1.76
BS-4OS (Ocropy) 0.47 (0.28) 0.40 (0.22) 11.75 (9.84) 72.51 1.03

ABBYY FineReader in the first step is acceptable since it also falsely recognizes non-
horizontal text and graphic elements. We use the confidence value per word which is
provided by the ABBYY FineReader SDK9 to decide which text line to accept from
ABBYY FineReader. According to the provided documentation, it is calculated us-
ing different bonuses (e. g. recognized word from a dictionary) and penalties (e. g. bad
recognition quality). We don’t provide any supplementary dictionary or word model
to the engine. Furthermore, we use the more accurate calculation of confidence of-
fered by ABBYY FineReader, which comes at the cost of a slower recognition speed.

If the confidence value exceeds a predefined threshold, we accept the recognized
output and remove the text area from the figure. Recognized lines of text often contain
multiple words. Thus, we offer a configuration parameter deciding whether we take
the average confidence value of all words of the line or the minimum confidence value
of all words of the line. The latter produces higher quality output while accepting
fewer text lines from the output due to poorly recognized single words within a text
line. We evaluate two configurations (BS-4OS-TP-0avg) and (BS-4OS-TP-0min) to
test both options.

For standard document pages, the confidence values are in the range from 0 to
about 100 as can be seen in Fig. 4. In contrast, the confidence values of the text
elements recognized in figures can also be negative. Investigations of the produced
confidence values suggested using a threshold of zero for both text line confidence
values since we observed that short words and numbers were assigned low confidence
values close to zero even though they were correctly recognized. Non-horizontal text
or certain graphic elements (e. g. dashed lines) have larger negative confidence values
whereas correctly recognized text elements mostly result in high positive values.

5 Evaluation

We conduct our evaluation on four datasets which are described in Section 5.1. The
evaluation measures are described in Section 5.2.

9 https://www.abbyy.com/en-us/ocr-sdk/, last access: September, 2017
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Fig. 4 Comparison of the confidence values of words from scholarly figures and words from a text docu-
ment

Table 2 Number of figures, average figure width and height, and average number of text elements (TE),
words, and characters per figure.

Dataset # Figures Width Height # TE # Words # Characters
EconBiz 121 982 681 25 35 151
DeGruyter 120 959 619 24 34 149
CHIME-R 115 714 454 14 18 69
CHIME-S 85 440 320 12 18 76
Total 441 801 535 19 27 114

5.1 Datasets

We have created two datasets using our own tool that was specifically designed for
manually labeling text elements in figures. One dataset is in the domain of economics,
the other is created from educational books. In addition, we use the CHIME datasets,
which consist of figures of varying quality and origin.

– EconBiz We have created a corpus of 121 scholarly figures from the economics
domain. We obtained these figures from a corpus of 288,000 open access pub-
lications from EconBiz10 by extracting all images, filtering them by size, ratio,
dominant color, and others. We randomly selected a subset of 121 figures, which
resemble a wide variety of scholarly figures from bar charts to maps. The figures
were manually labeled to create the necessary gold standard information.

10 https://www.econbiz.de/, last access: September, 2017
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– DeGruyter We manually labeled another dataset, composed of scholarly figures
from books provided by DeGruyter11 under a creative commons license12. We se-
lected ten books, which contain figures with English text and selected 120 figures
randomly from these books. Most of the selected books are from the chemistry
domain. The gold standard for these figures was created using the same tool which
has been used for the creation of the EconBiz dataset.

– CHIME-R The Chart Image Dataset13 consists of two subsets. The CHIME-R
consists of 115 real images that were collected on the Internet or scanned from
paper. Most of the figures are bar charts. The other figures are pie charts or line
charts. The gold standard was created by Yang Li [30].

– CHIME-S The other, CHIME-S dataset consists of 85 synthetically generated
images. This set mainly contains line charts and pie charts and few bar charts.
The gold standard was created by Zhao Jiuzhou [19].

Some statistics about the datasets which are useful for understanding the evaluation
results can be found in Table 2. Both, the CHIME-R and CHIME-S datasets contain
figures with an on average lower resolution than the EconBiz and DeGruyter datasets,
which are almost equal. With respect to the average number of characters, words, and
text elements in a figure, the distribution of EconBiz and DeGruyter are similar, with
about twice as many as the CHIME datasets.

5.2 Measures

We have selected four measures to evaluate the pipeline configurations and compare
their results. Our gold standard consists of text elements which represent single lines
of text taken from a scholarly figure. Each text line consists of one or multiple words
which are separated by blank space. Each word may consist of any combination of
characters and numbers. Every text line is defined by a specific position, size, and
orientation.

Each pipeline configuration generates a set of text line elements as well. These
text lines need to be matched to the gold standard. Since we do not have pixel infor-
mation per character, we match the extraction results with the gold standard by com-
paring their bounding boxes. Thus, we determine the intersection of the bounding
box provided by the gold standard with the bounding box extracted by our pipeline.
If the overlap between the bounding boxes is larger than a certain percentage with
respect to the overall area covered by the boxes, we consider the result as a match.
This reduces the error introduced through elements which are an incorrect match and
only have a small overlap with the gold standard. We empirically evaluated different
intersection thresholds, ranging from 5% up to 30%. A threshold of 10% has shown
good results regarding finding correct matches (true positive) and avoiding incorrect
matches (false positive).

11 http://www.degruyter.com/, last access: September, 2017
12 http://www.degruyter.com/dg/page/open-access-policy, last access: September,

2017
13 https://www.comp.nus.edu.sg/˜tancl/ChartImageDataset.htm, last access:

September, 2017
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We look at each gold standard element and take all elements from the pipeline as
matches that are above the intersection threshold. Thus, a gold standard element can
have multiple matching elements and an element from the pipeline can be assigned
to multiple elements from the gold standard if it fulfills the matching constraint for
each match. We have defined three measures to assess these matches. The first two
measures analyze the text localization. The third measure compares the recognized
text. Finally, we also decided to analyze the performance of the individual methods.

Text Location Detection First, we evaluate how accurate the configurations are at
detecting the text locations. If at least one match is found for an element from the
gold standard set, it counts as a true positive, regardless of what text was recognized.
If no match was found, it is considered as false negative. A false positive is an ele-
ment from the pipeline output which has no match. From these values, we compute
precision, recall, and F1-measure for assessing the text location detection. This mea-
sure is a binary evaluation and assesses only whether a match to an element exists or
not. In addition, we report the Element Ratio (ER) which is the number of elements
recognized by the pipeline divided by the number of elements in the gold standard
and the Matched Element Ratio (MER) which is the number of matched items from
the pipeline divided by the number of elements of the gold standard. These ratios
give an idea whether gold standard elements get matched by multiple elements and
whether the configuration tends to find more elements or less elements than it actu-
ally should find. We restrict the number of matches by applying a coverage threshold,
which means that the intersection area of two elements has to be at least as big as
10% of the total covered area. This measure penalizes mappings between elements of
largely varying size. We further evaluate these matches with the next two measures.

Text Element Coverage Second, we investigate the matching in more detail by
assessing the text element coverage. For each gold standard text element, we take
the pixels of the bounding boxes and compute their overlap to calculate precision,
recall, and F1-measure over all of its matches. The true positives, in this case, are
the overlapping pixels and the false positives are those pixels from the text elements
from the pipeline which are not overlapping. The false negatives are the pixels of the
gold standard element which were not covered by a text element from the pipeline.
The values are averaged over all gold standard text elements in a figure.

Text Recognition Quality Third, we assess the quality of the recognized text by
computing the Levenshtein distance between the extracted text and the gold standard.
We calculate the distance for each match and report the average for the whole figure.
Since multiple text elements from the pipeline can be matched to a gold standard text
line, we have to combine their text into one string. We combine the elements using
their position information. Besides a (local) Levenshtein Distance per match, we also
compute a global Levenshtein distance over all extracted text. This means that for
each figure, we combine all characters from the text elements of the gold standard
and add them to one string. Likewise, we create a string from the text elements ex-
tracted by the pipeline. The characters in both strings are sorted alphabetically and
we compute the Levenshtein Distance between these strings. This approximates the
overall number of operations needed to match the strings without considering posi-
tion information. Since the global Levenshtein Distance depends on the number of
characters inside a figure, we also report an operations per character (OPC) score,
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which is computed by dividing the global Levenshtein Distance by the number of
characters in the gold standard. This normalizes the global Levenshtein Distance and
makes it comparable across scholarly figures with different amounts of characters.

Runtime Performance Finally, we log the execution time for each method in mil-
liseconds to see which method has the best runtime performance. We analyze each
configuration individually and compute the average time for each method over all fig-
ures from all four datasets. For each configuration, we aggregate the execution time
of its methods to compute the average time needed per step of the pipeline.

6 Results

First, we present the evaluation results of the linear configurations in Section 6.1.
In Section 6.2 we show the results for the non-linear configurations and finally, in
Section 6.3, the results for the two-pass approach.

6.1 Linear Pipeline Configurations

We have executed all configurations listed in Section 4.1 and analyzed the output
with respect to the measures for Text Location Detection, Text Element Coverage,
Text Recognition Quality, and Runtime Performance as defined in Section 5.2. For
reasons of simplicity, we are only reporting the average values over all datasets for
all configurations as well as for each dataset separately. We compute the average
precision, recall, and F1-measure over the elements of each figure. We report the
average precision, recall, and F1-measure in terms of mean and standard deviation
over all individual results per figure. The local Levenshtein distance is reported as the
average of the mean values per figure and the average standard deviation. The global
Levenshtein distance is defined by the mean and standard deviation over all figures
and the normalized OPC score. Finally, we report the performance of the methods
and configurations, measured over the execution time averaged over the images of all
datasets.

First, we report the results for the measures Text Location Detection, Text Ele-
ment Coverage, Text Recognition Quality, and Runtime Performance of the configu-
rations from the literature. Subsequently, we present the results for the systematically
modified configurations.

The text location detection results for the configurations from the literature com-
puted over all datasets are reported in Table 3. The best F1-measure is achieved by
configuration (BS15) with a value of 0.58. Looking at each dataset separately as doc-
umented in Table 4, one can see that configuration (BS15) works best for the De-
Gruyter (0.70) and CHIME-R (0.63) datasets while (SZ13) has the best result for the
CHIME-S (0.55) and EconBiz (0.57) datasets. The coverage assessment in Table 5
shows the best precision of 0.79 for (Hu05), the best recall of 0.59 for (SZ13), and
the best F1-measure of 0.57 for (Hu05). The individual results per dataset for all
configurations are shown in Table 6.

The text recognition quality is presented in Table 7 and the individual results per
dataset for all configurations are presented in Table 8. We obtain the best results with
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Table 3 Precision (Pr), Recall (Re), and F1-measure for the Average Text Location Detection, Element
Ratio (ER), and Matched Element Ratio (MER). Results are averaged over all datasets for configurations
from the literature.

Config. Pr Re F1 (SD) ER MER
SZ13 0.63 0.47 0.54 (0.23) 0.80 0.59
Hu05 0.61 0.43 0.48 (0.28) 0.77 0.57
Ja07 0.59 0.45 0.49 (0.28) 0.83 0.51
BS15 0.66 0.55 0.58 (0.25) 1.04 0.69
CK15 0.52 0.50 0.53 (0.23) 1.37 0.60
Fr15 0.55 0.51 0.54 (0.25) 1.44 0.72
XK10 0.73 0.35 0.45 (0.26) 0.43 0.39

(BS15) with 0.67 operations per character (OPC), an average local Levenshtein of
6.23, and an average global Levenshtein of 108.81. Only configuration (CK15) has a
slightly better average local Levenshtein (6.07).

Table 4 Average F1-measure and Standard Deviation for Text Location Detection per configuration for
the individual datasets EconBiz, DeGruyter, CHIME-R, and CHIME-S.

Config. EconBiz DeGruyter CHIME-R CHIME-S
SZ13 0.57(0.25) 0.51(0.24) 0.53(0.21) 0.55(0.23)
Hu05 0.45(0.29) 0.55(0.30) 0.50(0.25) 0.34(0.26)
Ja07 0.47(0.29) 0.50(0.27) 0.52(0.26) 0.33(0.22)
CK15 0.53(0.22) 0.54(0.21) 0.56(0.24) 0.49(0.25)
Fr15 0.48(0.26) 0.62(0.21) 0.58(0.24) 0.41(0.21)
XK10 0.38(0.24) 0.50(0.24) 0.48(0.26) 0.29(0.18)
BS15 0.55(0.25) 0.70(0.18) 0.63(0.23) 0.43(0.25)
BS-1NC 0.54(0.26) 0.65(0.20) 0.61(0.24) 0.42(0.26)
BS-1OC 0.46(0.28) 0.51(0.28) 0.52(0.24) 0.43(0.25)
BS-1QP 0.42(0.23) 0.53(0.23) 0.49(0.27) 0.36(0.22)
BS-2nF 0.46(0.22) 0.59(0.19) 0.53(0.22) 0.37(0.25)
BS-2CG 0.48(0.29) 0.64(0.22) 0.58(0.27) 0.33(0.28)
BS-2CM 0.55(0.25) 0.70(0.21) 0.62(0.22) 0.40(0.24)
BS-23M 0.62(0.24) 0.73(0.17) 0.63(0.22) 0.47(0.25)
BS-4OP 0.57(0.24) 0.64(0.20) 0.59(0.24) 0.39(0.27)
BS-4OS 0.68(0.21) 0.71(0.18) 0.66(0.23) 0.63(0.26)
BS-6PC 0.55(0.25) 0.71(0.17) 0.62(0.23) 0.43(0.26)
BS-6PS 0.55(0.26) 0.71(0.17) 0.64(0.23) 0.43(0.25)
BS-6PQ 0.38(0.24) 0.57(0.21) 0.50(0.21) 0.36(0.25)

For the systematically modified configurations, Table 11 shows the text location
detection results, Table 12 the coverage assessment, and Table 13 shows the text
recognition results. The best location detection F1-measure of 0.67 is achieved by
(BS-4OS), which is also supported by the coverage assessment in Table 12 with
the highest F1-measure of 0.65. The separate evaluation of each dataset in Table 4
confirms as well that (BS-4OS) works best for EconBiz, CHIME-R, and CHIME-S
with F1-measures of 0.68, 0.66, and 0.63. The best result for DeGruyter is 0.73 by
(BS-23M) with (BS-4OS) having the second best F1-measure of 0.71. The best cov-
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Table 5 Precision (Pr), Recall (Re), and F1-measure for the Average Text Element Coverage. Results are
averaged over all datasets for configurations from the literature.

Config. Pr Re F1 (SD)
SZ13 0.52 0.59 0.47 (0.21)
Hu05 0.79 0.54 0.57 (0.20)
Ja07 0.41 0.32 0.32 (0.21)
BS15 0.60 0.49 0.50 (0.24)
CK15 0.53 0.41 0.42 (0.21)
Fr15 0.65 0.54 0.54 (0.23)
XK10 0.33 0.34 0.30 (0.22)

erage assessment results for EconBiz (0.56), DeGruyter (0.67), CHIME-R (0.71),
and CHIME-S (0.66) are by (BS-4OS), as shown in Table 6. Configuration (BS-
4OS(Ocropy)) also produces the best text recognition results with an average local
Levenshtein of 4.71 and an OPC of 0.53. Comparing the performance of the three
OCR engines and different configurations on each dataset individually (see Table 8,
Table 9, and Table 10), the best local Levenshtein is also achieved by configuration
(BS-4OS(Ocropy)) with values between 3.51 and 5.80. In addition, configuration (BS-
4OS(Ocropy)) shows the best results of 95.49 for the average global Levenshtein Dis-
tance. Comparing the different, systematically modified configurations per step of the
pipeline shows that the only major improvement is achieved by (BS-4OS). We have
also evaluated most of the systematic configurations using a test license of the com-
mercial OCR engine ABBYY FineReader. The text recognition results are shown in

Table 6 Average F1-measure and Standard Deviation for Text Element Coverage per configuration for the
individual datasets EconBiz, DeGruyter, CHIME-R, and CHIME-S.

Config. EconBiz DeGruyter CHIME-R CHIME-S
SZ13 0.42(0.18) 0.44(0.23) 0.49(0.21) 0.55(0.20)
Hu05 0.48(0.17) 0.58(0.22) 0.66(0.18) 0.47(0.22)
Ja07 0.28(0.19) 0.33(0.20) 0.41(0.22) 0.21(0.19)
CK15 0.37(0.19) 0.48(0.20) 0.45(0.22) 0.35(0.23)
Fr15 0.42(0.21) 0.62(0.15) 0.62(0.25) 0.45(0.25)
XK10 0.23(0.17) 0.34(0.21) 0.37(0.26) 0.16(0.11)
BS15 0.40(0.20) 0.62(0.14) 0.60(0.26) 0.31(0.21)
BS-1NC 0.36(0.21) 0.58(0.16) 0.58(0.26) 0.27(0.17)
BS-1OC 0.32(0.24) 0.46(0.28) 0.42(0.25) 0.31(0.21)
BS-1QP 0.43(0.22) 0.45(0.23) 0.43(0.26) 0.33(0.22)
BS-2nF 0.40(0.17) 0.56(0.16) 0.60(0.22) 0.35(0.23)
BS-2CG 0.46(0.19) 0.58(0.16) 0.69(0.19) 0.45(0.23)
BS-2CM 0.36(0.20) 0.60(0.16) 0.59(0.25) 0.24(0.18)
BS-23M 0.39(0.19) 0.62(0.14) 0.56(0.22) 0.30(0.17)
BS-4OP 0.37(0.17) 0.47(0.14) 0.48(0.21) 0.20(0.20)
BS-4OS 0.56(0.14) 0.67(0.11) 0.71(0.21) 0.66(0.20)
BS-6PC 0.39(0.20) 0.62(0.15) 0.60(0.26) 0.30(0.20)
BS-6PS 0.39(0.20) 0.61(0.15) 0.59(0.26) 0.31(0.21)
BS-6PQ 0.21(0.16) 0.41(0.20) 0.36(0.22) 0.19(0.17)
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Table 7 Average local Levenshtein (L) and global Levenshtein (G) and Operations Per Character (OPC)
over all datasets for the configurations from the literature using Tesseract.

Config. AV GL(SD) AV GG(SD) OPC
SZ13 6.67 (4.82) 122.28 (141.03) 0.70
Hu05 6.65 (5.41) 126.35 (138.95) 0.71
Ja07 7.92 (5.56) 150.25 (140.59) 1.13
BS15 6.23 (4.93) 108.81 (108.53) 0.67
CK15 6.07 (5.08) 120.12 (125.87) 0.71
Fr15 6.72 (6.02) 135.64 (201.31) 0.85
XK10 7.06 (5.41) 125.45 (134.88) 0.74

Table 14. The results vary in a range between the results of Tesseract and Ocropy and
do not present a better configuration than (BS-4OS).

Fig. 5 compares the average execution time over all figures from all four datasets
for the seven configurations motivated from the literature. The results are shown in
seconds at log scale, due to the varying runtime performance. As one can see from
the figure, the configurations (SZ13), (Hu05), and (Ja07) are in the same range, with
the latter one being the fastest configuration. The other configurations are by an order
of magnitude slower, with (CK15) being the configuration needing most of the time
(about 38 days for all four datasets). A detailed analysis of the data generated by the
systematically modified configurations led to the following observations. The fastest
binarization is Otsu’s method with an average execution time of less than 100ms per
figure (averaged over all figures from all datasets). The adaptive binarization requires
the most time with about two minutes on average. The pivoting algorithm requires

Table 8 Average Levenshtein and Standard Deviation for Text Recognition Quality per configuration for
the individual datasets EconBiz, DeGruyter, CHIME-R, and CHIME-S using Tesseract.

Config EconBiz DeGruyter CHIME-R CHIME-S
SZ13 6.00(3.24) 6.13(3.25) 7.10(6.25) 7.29(5.64)
Hu05 5.69(3.33) 5.69(3.74) 6.75(6.95) 7.94(6.13)
Ja07 7.15(3.62) 7.97(3.85) 7.94(7.25) 8.36(6.34)
CK15 5.27(3.11) 4.96(2.78) 6.65(7.21) 6.74(5.30)
Fr15 5.74(3.34) 6.53(5.87) 6.81(7.76) 7.26(5.55)
XK10 6.27(3.46) 6.46(3.56) 6.99(7.14) 7.88(6.09)
BS15 5.42(3.06) 4.88(2.58) 6.51(6.85) 7.21(5.34)
BS-1NC 5.47(3.12) 5.30(2.78) 6.42(6.85) 7.22(5.42)
BS-1OC 5.74(3.20) 5.76(3.05) 6.72(6.72) 7.51(5.71)
BS-1QP 7.13(4.13) 8.44(4.88) 8.50(7.88) 8.68(6.49)
BS-2nF 5.78(3.33) 5.83(3.11) 6.64(6.29) 7.63(5.72)
BS-2CG 5.77(3.43) 5.49(3.79) 6.63(7.46) 8.34(6.27)
BS-2CM 5.57(3.07) 4.95(2.75) 6.72(7.27) 7.51(6.08)
BS-23M 5.17(3.16) 4.92(3.34) 6.66(6.68) 7.53(5.62)
BS-4OP 7.56(3.95) 8.82(3.84) 8.15(7.25) 8.49(6.47)
BS-4OS 4.90(3.01) 4.55(2.55) 5.76(6.01) 6.27(4.97)
BS-6PC 5.13(3.03) 4.77(2.33) 6.06(6.71) 7.29(5.43)
BS-6PS 5.39(3.02) 4.83(2.44) 6.53(6.87) 7.24(5.37)
BS-6PQ 5.47(3.13) 4.96(2.63) 6.31(6.91) 7.43(5.70)
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Table 9 Average Levenshtein and Standard Deviation for Text Recognition Quality per configuration for
the individual datasets EconBiz, DeGruyter, CHIME-R, and CHIME-S using Ocropy.

Config. EconBiz DeGruyter CHIME-R CHIME-S
BS15 4.80(2.93) 4.07(2.26) 5.96(6.97) 7.20(5.66)
BS-1NC 4.81(2.86) 4.47(2.83) 5.94(7.00) 7.47(5.71)
BS-1OC 5.16(3.10) 5.21(3.23) 6.54(6.89) 7.35(5.89)
BS-1QP 6.18(3.33) 6.29(3.04) 7.19(7.72) 8.51(6.27)
BS-2nF 5.30(2.94) 5.02(2.58) 6.91(7.83) 7.78(6.22)
BS-2CG 5.28(3.27) 4.71(2.92) 6.31(7.83) 8.14(6.29)
BS-2CM 4.98(3.00) 4.45(2.42) 6.09(7.35) 7.73(6.10)
BS-23M 4.56(2.89) 3.82(2.24) 6.13(7.01) 7.33(5.60)
BS-4OP 6.34(3.29) 6.71(3.44) 7.36(7.81) 8.22(6.44)
BS-4OS 3.86(2.82) 3.51(2.00) 5.08(6.32) 5.80(5.50)
BS-6PC 4.73(2.93) 4.28(2.23) 5.73(6.82) 7.19(5.63)
BS-6PS 4.75(2.89) 4.08(2.27) 5.79(6.87) 7.16(5.61)
BS-6PQ 5.20(2.99) 4.64(2.77) 5.95(6.59) 7.57(6.05)

Table 10 Average Levenshtein and Standard Deviation for Text Recognition Quality per configuration for
the individual datasets EconBiz, DeGruyter, CHIME-R, and CHIME-S using ABBYY FineReader OCR.

Config. EconBiz DeGruyter CHIME-R CHIME-S
BS15 5.44(3.08) 4.79(2.73) 6.19(6.71) 7.45(5.52)
BS-1NC 5.73(3.50) 5.09(3.03) 6.39(6.89) 7.28(5.57)
BS-1OC 5.89(3.48) 5.70(3.19) 6.86(6.46) 7.31(5.71)
BS-2nF 5.66(3.24) 5.31(3.08) 6.30(6.52) 7.36(5.69)
BS-2CG 5.99(3.48) 5.37(3.52) 6.78(7.76) 8.31(6.35)
BS-2CM 5.72(3.11) 4.77(2.44) 6.49(7.24) 7.93(6.22)
BS-23M 5.10(2.96) 4.57(2.90) 6.36(6.53) 7.66(5.82)
BS-4OP 7.80(3.98) 8.47(3.93) 8.10(7.95) 9.34(6.73)
BS-4OS 4.76(3.03) 4.30(2.30) 5.38(5.82) 5.09(4.68)
BS-6PC 4.71(2.96) 4.00(2.34) 5.36(6.63) 6.57(5.19)
BS-6PS 5.43(3.07) 4.75(2.68) 6.12(6.64) 7.43(5.49)
BS-6PQ 5.83(3.07) 5.77(2.69) 6.87(7.26) 7.85(5.96)

about twice as much time as Connected Component Labeling for region extraction.
Regarding step 2 and 3 of the pipeline, only the morphological clustering differs a lot
from the rest with an average execution time of several minutes or more. The PSD
and Hough orientation estimation execute on average in a few milliseconds, while
the SSOD needs several seconds. The comparison of Ocropy and Tesseract shows
that the latter one is about three times faster. Finally, all post-processing methods
need on average less than a millisecond.

6.2 Non-Linear Pipeline Configurations

In our experiments, configuration (BS-4OS/R1) resulted in similar results regarding
the average F1-measures over all datasets as without the additional binarization step.
However, the text recognition quality decreased with respect to the average global
Levenshtein distance, the average local Levenshtein distance, as well as the opera-
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Table 11 Precision (Pr), Recall (Re), and F1-measure for the Average Text Location Detection, Element
Ratio (ER), and Matched Element Ratio (MER). Results are averaged over all datasets for the systemati-
cally modified configurations.

Config. Pr Re F1 (SD) ER MER
BS15 0.66 0.55 0.58 (0.25) 1.04 0.69
BS-1NC 0.64 0.52 0.57 (0.25) 0.96 0.64
BS-1OC 0.67 0.40 0.49 (0.26) 0.74 0.53
BS-1QP 0.61 0.44 0.48 (0.25) 0.96 0.75
BS-2nF 0.60 0.46 0.51 (0.23) 0.86 0.52
BS-2CG 0.62 0.50 0.55 (0.27) 0.90 0.64
BS-2CM 0.61 0.54 0.59 (0.25) 1.19 0.74
BS-23M 0.67 0.55 0.62 (0.23) 1.08 0.65
BS-4OP 0.62 0.53 0.57 (0.24) 1.01 0.66
BS-4OS 0.67 0.63 0.67 (0.22) 1.27 0.88
BS-6PC 0.69 0.54 0.59 (0.25) 0.97 0.70
BS-6PS 0.67 0.55 0.60 (0.25) 1.01 0.69
BS-6PQ 0.66 0.38 0.48 (0.25) 0.60 0.43

tions per character. The comparison with the results of the non-linear configuration
with repetition of the full pipeline (BS-4OS/R2) shows worse results than with the
linear configuration. Table 15 lists the detailed results of the comparison of the lin-
ear and non-linear configurations. Both non-linear pipelines are based on the linear
configuration (BS-4OS-O) and execute the first step, which takes the most time, sev-
eral times or even repeats the whole pipeline. Thus, the executions of the non-linear
configuration pipelines take much longer than their linear configuration counterpart.

6.3 Two-Pass Pipeline Configurations

Two different configurations were tested for the two-pass approach. Configuration (BS-
4OS-TP-0avg) uses a threshold of 0.0 for the average confidence value of the text line,

Table 12 Precision (Pr), Recall (Re), and F1-measure for the Average Text Element Coverage. Results are
averaged over all datasets for the systematically modified configurations.

Config. Pr Re F1 (SD)
BS15 0.60 0.49 0.50 (0.24)
BS-1NC 0.59 0.44 0.47 (0.24)
BS-1OC 0.46 0.40 0.38 (0.26)
BS-1QP 0.41 0.57 0.42 (0.23)
BS-2nF 0.59 0.54 0.50 (0.21)
BS-2CG 0.76 0.54 0.57 (0.20)
BS-2CM 0.57 0.47 0.47 (0.24)
BS-23M 0.60 0.47 0.48 (0.22)
BS-4OP 0.49 0.40 0.41 (0.20)
BS-4OS 0.77 0.63 0.65 (0.17)
BS-6PC 0.59 0.49 0.49 (0.24)
BS-6PS 0.59 0.49 0.49 (0.24)
BS-6PQ 0.39 0.29 0.31 (0.21)



Text Extraction from Scholarly Figures: A Systematic Comparison 25

Table 13 Average local Levenshtein (L) and global Levenshtein (G) and Operations Per Character (OPC)
over all datasets for the systematic configurations.

Tesseract Ocropy
Config. AV GL(SD) AV GG(SD) OPC AV GL(SD) AV GG(SD) OPC
BS15 6.23 (4.93) 108.81 (108.53) 0.67 5.47 (4.98) 108.55 (106.64) 0.64
BS-1NC 6.27 (4.95) 117.58 (124.23) 0.69 5.70 (5.09) 117.46 (128.73) 0.66
BS-1OC 6.55 (5.06) 131.58 (142.74) 0.75 6.16 (5.21) 131.39 (143.16) 0.73
BS-1QP 8.31 (6.14) 154.54 (168.10) 1.09 7.06 (5.62) 136.40 (132.05) 0.82
BS-2nF 6.55 (4.94) 111.30 (105.13) 0.75 6.29 (5.50) 120.71 (109.18) 0.76
BS-2CG 6.68 (5.65) 108.86 (102.93) 0.66 6.22 (5.75) 130.21 (127.87) 0.69
BS-2CM 6.30 (5.29) 115.43 (113.79) 0.69 5.85 (5.34) 110.74 (107.23) 0.67
BS-23M 6.15 (5.12) 104.61 (105.97) 0.63 5.52 (5.10) 106.71 (104.05) 0.64
BS-4OP 8.30 (5.59) 147.91 (129.55) 1.04 7.23 (5.60) 135.21 (122.48) 0.85
BS-4OS 5.47 (4.39) 96.29 (99.44) 0.58 4.71 (4.66) 95.49 (94.80) 0.53
BS-6PC 5.96 (4.88) 105.50 (107.16) 0.61 5.46 (5.00) 109.07 (104.57) 0.63
BS-6PS 6.20 (4.90) 108.06 (109.38) 0.64 5.45 (4.96) 106.38 (103.29) 0.63
BS-6PQ 6.07 (5.03) 120.78 (122.44) 0.67 5.79 (4.97) 126.92 (124.06) 0.71

Table 14 Average local Levenshtein (L) and global Levenshtein (G) and Operations Per Character (OPC)
over all datasets for the systematic configurations with ABBYY FineReader OCR.

Config. AV GL(SD) AV GG(SD) OPC
BS15 6.08 (4.94) 119.47 (109.53) 0.76
BS-1NC 6.28 (5.12) 124.91 (125.83) 0.78
BS-1OC 6.54 (4.94) 137.37 (141.49) 0.85
BS-2nF 6.19 (4.91) 129.07 (125.91) 0.86
BS-2CG 6.75 (5.74) 105.06 (86.48) 0.64
BS-2CM 6.22 (5.25) 123.97 (111.51) 0.78
BS-23M 6.06 (5.04) 111.50 (94.13) 0.75
BS-4OP 8.45 (5.94) 156.56 (132.74) 1.08
BS-4OS 5.08 (4.32) 107.18 (106.71) 0.63
BS-6PC 5.19 (4.69) 95.39 (94.47) 0.53
BS-6PS 6.05 (4.91) 119.67 (107.84) 0.73
BS-6PQ 6.58 (5.06) 142.36 (134.57) 0.80

Table 15 F1-measure (F1D) for Text Location Detection, F1-measure (F1C) for Text Element Coverage,
Average Local Levenshtein (AV GL), Average Global Levenshtein (AV GG) and operations per character
(OPC) for the linear baseline (BS-4OS) and the non-linear configurations (BS-4OS/R1) and (BS-4OS/R2).

Config. F1D(SD) F1C(SD) AV GL(SD) AV GG OPC
BS-4OS (Tesseract) 0.67 (0.22) 0.65 (0.17) 5.47 (4.39) 96.29 0.58
BS-4OS (Ocropy) 0.64 (0.21) 0.55 (0.20) 4.71 (4.66) 95.49 0.53
BS-4OS/R1 (Tesseract) 0.67 (0.22) 0.65 (0.18) 5.64 (4.80) 102.72 0.60
BS-4OS/R1 (Ocropy) 0.65 (0.21) 0.55 (0.21) 4.78 (4.66) 96.30 0.55
BS-4OS/R2 (Tesseract) 0.62 (0.22) 0.63 (0.17) 5.86 (4.97) 106.08 0.62
BS-4OS/R2 (Ocropy) 0.60 (0.22) 0.51 (0.20) 4.82 (4.62) 97.28 0.55

whereas the configuration (BS-4OS-TP-0min) accepts only text lines with a minimum
confidence of 0.0. Both configurations improved the results of the best linear pipeline
configuration (BS-4OS). Regarding the F1D-measure both two-pass configurations
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Fig. 5 Average execution time for the configurations motivated from the literature

improved the previous best results by 0.02. The text recognition quality clearly im-
proved with respect to the average global Levenshtein distance, the average local
Levenshtein distance, and the operations per character. Configuration (BS-4OS-TP-
0min) achieved the overall best results. Table 16 lists the detailed results of the two-
pass configurations compared with the linear pipeline configuration (BS-4OS).

Table 16 F1-measure (F1D) for Text Location Detection, F1-measure (F1C) for Text Element Coverage,
Average Local Levenshtein (AV GL), Average Global Levenshtein (AV GG) and operations per character
(OPC) for the linear baseline (BS-4OS) and the two-pass configurations (BS-4OS-TP-0avg) and (BS-4OS-
TP-0min).

Config. F1D(SD) F1C(SD) AV GL(SD) AV GG OPC
BS-4OS (Tesseract) 0.67 (0.22) 0.65 (0.17) 5.47 (4.39) 96.29 0.58
BS-4OS (Ocropy) 0.64 (0.21) 0.55 (0.20) 4.71 (4.66) 95.49 0.53
BS-4OS-TP-0avg 0.69 (0.20) 0.65 (0.16) 3.89 (4.64) 83.09 0.36
BS-4OS-TP-0min 0.69 (0.20) 0.64 (0.16) 3.59 (4.26) 77.74 0.35

The performance measures for the two-pass configuration showed that the initial
OCR step increases the runtime performance only marginally and can be neglected.
Thus, the two-pass configuration is the overall best configuration with respect to the
extraction quality and runtime performance.
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7 Discussion

7.1 Linear Pipeline Configurations

Comparing the different linear configurations from the literature shows that our TX
pipeline (BS15) works best. A possible reason is that our pipeline does not make
many assumptions about the figures, e. g. figure type, font, or color. Thus, perform-
ing better on the heterogeneous datasets. In the following, we will discuss the results
for the individual pipeline steps based on the results from the systematically modified
linear configurations. Comparing the configurations for the first pipeline step leads to
the conclusion that the adaptive binarization works best because it can adapt to local
color variations in a figure. Otsu’s method is too simple and Niblack’s method is more
suited for document images which have fewer color variations. The non-competitive
results for the pivoting algorithm can be explained with the larger regions and the
possibility that a region can be a mixture of text and graphic elements due to the
only horizontal and vertical subdivision. Looking at step 2 and 3 of the pipeline, only
the morphological clustering shows slightly better results than the DBSCAN-MST
combination, most likely due to its processing on pixel level. When comparing the
different orientation calculation methods in step 4, the Single String Orientation De-
tection works best. One explanation can be that the orientation estimation via Hough
in the base configuration works on the centers of mass of character regions, which
is an aggregated region representation, while the SSOD in (BS-4OS) computes the
orientation on the original pixels. Thus, it avoids a possible error, induced by the
pixel aggregation. When comparing the OCR engines from step 5, Ocropy generally
produces better results than Tesseract. Ocropy seems to be more conservative, having
built in much more restrictions about what input to accept and when to execute the
OCR. Furthermore, each OCR engine comes with its own English language model
and we did not evaluate their influence. Finally, if we compare the open source OCR
engines Tesseract and Ocropy with the commercial ABBYY FineReader OCR within
in the linear pipeline, we can see that the FineReader’s text recognition results are in
the same range as the open source engines. This leads to the conclusion, that the OCR
step does not have that much influence on the overall performance of the text extrac-
tion pipeline. The methods for post-processing do not improve the results. One reason
might be the simplicity of the methods, the other that the later steps of the pipeline
have less influence on the overall results, as can be seen in the OCR step compari-
son. The best results regarding linear configurations were achieved by (BS-4OS) as
presented in our earlier work [3].

The runtime performance results for the configurations motivated from the liter-
ature clearly show that the first pipeline step is the most expensive one with respect
to the execution time. Those configurations which use standard Otsu’s method are a
lot faster than those using Adaptive Otsu Binarization. This difference was expected
since the latter one recursively processes a figure while applying Otsu’s method mul-
tiple times. In addition, configuration (CK15) did not finish in reasonable time (about
2 hours per image, 38 days in total) due to its expensive morphological clustering.
This method is very expensive since it iterates multiple times over an image increas-
ing the region by single pixel borders each time. The systematic comparisons confirm
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these results. Furthermore, it shows that the SSOD is more expensive than Hough and
PSD because it works on the pixel level similar to the morphological clustering. The
difference between Ocropy and Tesseract can be explained by the fact that Tesseract
is used via an API while Ocropy is currently used via command line which requires
system calls. The fast execution of the post-processing methods results from their
simplicity, applying only simple string comparisons.

7.2 Non-Linear Pipeline Configurations

The results for the non-linear configurations support our previous discovery that a
modification in or after the OCR processing step cannot improve the results because
the information is already lost at this point. Thus, the small improvement by repeat-
ing the binarization is most likely a random deviation. The results also conform with
the text recognition results with the commercial ABBYY FineReader, which differed
only slightly (see Table 14). This means that in the region extraction, region classifi-
cation, text line detection, or orientation estimation steps before the text recognition,
important information is lost so that the OCR engines are not able to produce better
recognition results from the given input. This explains also why a repetition of the
pipeline after the text recognition step does not improve the results.

7.3 Two-Pass Pipeline Configurations

Our preliminary experiments in Section 4.3 suggested that the combination of AB-
BYY FineReader as OCR engine to detect horizontal text and the linear config-
uration (BS-4OS) to recognize rotated text could improve the recognition results.
The evaluation confirmed that the two-pass extension of the best configuration (BS-
4OS(Ocropy)) improves the results even further. However, one difficulty is the choice
of an appropriate decision criterion to accept the output of ABBYY FineReader OCR.
Using the minimum confidence value as criteria produced higher quality regarding
average global and local Levenshtein distances. However, the results regarding F1-
measures for text location detection and text element coverage were not improved
compared with the configuration using the average confidence value. This means that
less output was accepted and removed from the figure but not more text was cor-
rectly recognized. One explanation might be that the linear configuration was not
able to perform better on text which contained words with low confidence values.
This might be due to bad image quality or characters/symbols that are unknown to
the OCR engines and thus, cannot be recognized. Another possible reason, which we
did not investigate further, is the modification of the image before applying the linear
pipeline, which could have introduced additional noise since only the color white is
used to erase the text that was already extracted.
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8 Conclusion

Starting with the 32 linear pipeline configurations for text extraction, our compari-
son [3] showed that there is a clear favorite configuration (BS-4OS(Ocropy)). We ex-
tended our set of configurations by introducing the commercial ABBYY FineReader
OCR. However, the evaluation of the new configurations did not show a significant
improvement of the recognition results. The results of the non-linear configurations
for text extraction did not improve the results of the linear configurations either. Thus,
we can conclude that valuable information is lost before applying the OCR. The de-
veloped two-pass approach achieved the best results with configuration (BS-4OS-
TP-0min) which uses the commercial OCR engine ABBYY FineReader to extract
horizontal text and then uses the best linear configuration (BS-4OS(Ocropy)) to ex-
tract rotated text. Concluding from the results of our experiments, a more detailed
investigation of the region extraction and region classification steps is needed to fur-
ther improve the results. Further extensions to handle subscripts, superscripts, and
mathematical formulas should be investigated as well. However, this requires a more
precise, multi-level gold standard which, to the best of our knowledge, does not ex-
ist so far. Finally, as stated in the introduction, we are providing the datasets and
the implementation of the generic linear pipeline that was used in our experiment to
the public. This allows for integrating and comparing new methods as well as the
reproduction of our results.
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30 F. Böschen, T. Beck, and A. Scherp

8. Y. Chiang and C. A. Knoblock. A general approach for extracting road vector data from raster maps.
International Journal on Document Analysis and Recognition (IJDAR), 16(1):55–81, 2013.

9. Y. Chiang and C. A. Knoblock. Recognizing text in raster maps. GeoInformatica, 19(1):1–27, 2015.
10. S. R. Choudhury and C. L. Giles. An architecture for information extraction from figures in digital

libraries. In A. Gangemi, S. Leonardi, and A. Panconesi, editors, Proceedings of the 24th Interna-
tional Conference on World Wide Web Companion, WWW 2015, Florence, Italy, May 18-22, 2015 -
Companion Volume, pages 667–672. ACM, 2015.

11. M. P. Deseilligny, H. L. Men, and G. Stamon. Character string recognition on maps, a rotation-
invariant recognition method. Pattern Recognition Letters, 16(12):1297–1310, 1995.

12. M. Fraz, M. S. Sarfraz, and E. A. Edirisinghe. Exploiting colour information for better scene text
detection and recognition. International Journal on Document Analysis and Recognition (IJDAR),
18(2):153–167, 2015.

13. G. Gao, H. Zhang, and H. Chen. A robust video text extraction and recognition approach using
OCR feedback information. In Y. Ho, J. Sang, Y. M. Ro, J. Kim, and F. Wu, editors, Advances
in Multimedia Information Processing - PCM 2015 - 16th Pacific-Rim Conference on Multimedia,
Gwangju, South Korea, September 16-18, 2015, Proceedings, Part I, volume 9314 of Lecture Notes
in Computer Science, pages 507–517. Springer, 2015.

14. J. Gllavata and B. Freisleben. Adaptive fuzzy text segmentation in images with complex backgrounds
using color and texture. In A. Gagalowicz and W. Philips, editors, Computer Analysis of Images
and Patterns, 11th International Conference, CAIP 2005, Versailles, France, September 5-8, 2005,
Proceedings, volume 3691 of Lecture Notes in Computer Science, pages 756–765. Springer, 2005.

15. W. Huang and C. L. Tan. A system for understanding imaged infographics and its applications. In P. R.
King and S. J. Simske, editors, Proceedings of the 2007 ACM Symposium on Document Engineering,
Winnipeg, Manitoba, Canada, August 28-31, 2007, pages 9–18. ACM, 2007.

16. W. Huang, C. L. Tan, and W. K. Leow. Associating text and graphics for scientific chart understanding.
In Eighth International Conference on Document Analysis and Recognition (ICDAR 2005), 29 August
- 1 September 2005, Seoul, Korea, pages 580–584. IEEE Computer Society, 2005.

17. J. Illingworth and J. Kittler. A survey of the hough transform. Computer Vision, Graphics, and Image
Processing, 44(1):87–116, 1988.

18. C. Jayant, M. Renzelmann, D. Wen, S. Krisnandi, R. E. Ladner, and D. Comden. Automated tactile
graphics translation: in the field. In E. Pontelli and S. Trewin, editors, Proceedings of the 9th Interna-
tional ACM SIGACCESS Conference on Computers and Accessibility, ASSETS 2007, Tempe, Arizona,
USA, October 15-17, 2007, pages 75–82. ACM, 2007.

19. Z. Jiuzhou. Creation of synthetic chart image database with ground truth. Honors year project re-
port, National University of Singapore, 2006. https://www.comp.nus.edu.sg/˜tancl/
ChartImageDatabase/Report_Zhaojiuzhou.pdf.

20. K. Khurshid, I. Siddiqi, C. Faure, and N. Vincent. Comparison of Niblack inspired binarization meth-
ods for ancient documents. In K. Berkner and L. Likforman-Sulem, editors, Document Recognition
and Retrieval XVI, DRR 2009, 16th Document Recognition and Retrieval Conference, part of the
IS&T-SPIE Electronic Imaging Symposium, San Jose, CA, USA, January 18-22, 2009. Proceedings,
volume 7247 of SPIE Proceedings, pages 1–10. SPIE, 2009.

21. S. Lu, T. Chen, S. Tian, J. Lim, and C. L. Tan. Scene text extraction based on edges and support vector
regression. International Journal on Document Analysis and Recognition (IJDAR), 18(2):125–135,
2015.

22. X. Lu, S. Kataria, W. J. Brouwer, J. Z. Wang, P. Mitra, and C. L. Giles. Automated analysis of
images in documents for intelligent document search. International Journal on Document Analysis
and Recognition (IJDAR), 12(2):65–81, Jul 2009.

23. J. I. Olszewska. Active contour based optical character recognition for automated scene understand-
ing. Neurocomputing, 161:65–71, 2015.

24. N. Otsu. A threshold selection method from gray-level histograms. Systems, Man and Cybernetics,
IEEE Transactions on, 9(1):62–66, Jan 1979.

25. H. Samet and M. Tamminen. Efficient component labeling of images of arbitrary dimension repre-
sented by linear bintrees. IEEE Trans. Pattern Anal. Mach. Intell., 10(4):579–586, 1988.

26. J. Sas and A. Zolnierek. Three-stage method of text region extraction from diagram raster images. In
R. Burduk, K. Jackowski, M. Kurzynski, M. Wozniak, and A. Zolnierek, editors, Proceedings of the
8th International Conference on Computer Recognition Systems CORES 2013, Milkow, Poland, 27-29
May 2013, volume 226 of Advances in Intelligent Systems and Computing, pages 527–538. Springer,
2013.



Text Extraction from Scholarly Figures: A Systematic Comparison 31

27. M. Savva, N. Kong, A. Chhajta, F. Li, M. Agrawala, and J. Heer. Revision: automated classification,
analysis and redesign of chart images. In J. S. Pierce, M. Agrawala, and S. R. Klemmer, editors,
Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, Santa
Barbara, CA, USA, October 16-19, 2011, pages 393–402. ACM, 2011.

28. C. M. Strohmaier, C. Ringlstetter, K. U. Schulz, and S. Mihov. Lexical postcorrection of ocr-results:
The web as a dynamic secondary dictionary? In 7th International Conference on Document Analysis
and Recognition (ICDAR 2003), 2-Volume Set, 3-6 August 2003, Edinburgh, Scotland, UK, pages
1133–1137. IEEE Computer Society, 2003.

29. S. Xu and M. Krauthammer. A new pivoting and iterative text detection algorithm for biomedical
images. Journal of Biomedical Informatics, 43:924–931, 2010.

30. L. Yang, W. Huang, and C. L. Tan. Semi-automatic ground truth generation for chart image recogni-
tion. In H. Bunke and A. L. Spitz, editors, Document Analysis Systems VII, 7th International Work-
shop, DAS 2006, Nelson, New Zealand, February 13-15, 2006, Proceedings, volume 3872 of Lecture
Notes in Computer Science, pages 324–335. Springer, 2006.


