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Abstract—Over the last years, many papers have been
published about how to use machine learning for classifying
postings on microblogging platforms like Twitter, e. g., in order
to assist users to reach tweets that interest them. Typically,
the automatic classification results are then evaluated against
a gold standard classification which consists of either (i) the
hashtags of the tweets’ authors, or (ii) manual annotations of
independent human annotators. In this paper, we show that
there are fundamental differences between these two kinds
of gold standard classifications, i. e., human annotators are
more likely to classify tweets like other human annotators
than like the tweets’ authors. Furthermore, we discuss how
these differences may influence the evaluation of automatic
classifications, like they may be achieved by Latent Dirichlet
Allocation (LDA). We argue that researchers who conduct
machine learning experiments for tweet classification should
pay particular attention to the kind of gold standard they use.
One may even argue that hashtags are not appropriate as a
gold standard for tweet classification.

I. INTRODUCTION

Twitter is one of the most popular microblogging plat-
forms. Users can post short text messages (tweets) of up to
140 characters long. Furthermore, the authors can annotate
their tweets with hashtags. An example tweet is “#Sochi2014
opening ceremony was great!”. The hashtag “#Sochi2014”
can be seen as a kind of classification for the tweet.

Due to the growth in volume of tweets, it is not trivial
to develop methods that help users to access tweets that
they are interested in. Recent studies have confirmed that
tweet classification could assist users to understand content
of tweets and search tweets in the Twitter space [1], [2], [3].
Therefore, tweet classification is vital, in order to organize
the massive volume of tweets. Consequently, many authors
propose to use machine learning algorithms for automati-
cally classifying tweets (see Section II).

In principle, two main approaches can be identified how
to evaluate such automatic classifications: Either they are
compared to a gold standard which consists of the authors’
hashtags [2], or they are compared to a gold standard which
consists of human annotations. For example, Ren et al. [4]
used the annotations made by 81 social media experts,

who were specifically trained for the task. Also Yang et
al. [5] used human annotations as gold standard, but in their
experiment, the annotators were only allowed to use terms
that are contained in a pre-defined taxonomy.

In this paper, we study in how far there are fundamental
differences between these two kinds of gold standard clas-
sifications. It is important to understand their differences,
because they influence how to interpret the evaluation re-
sults of automatic tweet classification approaches. For this
purpose, we compare the classification results achieved by
authors’ hashtags, a machine learning approach, and human
annotations. As our dataset, we use tweets and hashtags
from the Tweets2011 dataset provided by TREC and prepare
ten topics (i. e., ten classification tasks) from the dataset.
On these topics, we then apply Latent Dirichlet Allocation
(LDA) [6], which can be used for automatically classifying
the tweets. Using LDA avoids any bias in our automatic
classification towards a specific classification because LDA
is an unsupervised approach, which requires no labeled train-
ing data. Furthermore, for collecting human annotations, we
have conducted an online experiment where 163 participants
manually classified the tweets from the ten topics. From the
obtained results, we argue that researchers should be aware
of which gold standard they use for tweet classification when
interpreting results.

The rest of this paper is structured as follows: In Sec-
tion II, we review the related work with regard to automati-
cally classifying tweets, and how to conduct experiments in
which humans manually classify tweets. Then, in Section III,
we introduce the three classification approaches hashtag
classifier, machine learning classifier, and human classifier
in more detail. In Section IV, we describe the preparation of
our experiments, i .e., the dataset used and how we collect
the tweet classification results using the machine learning
approach and human annotators. After that, we investigate
and discuss our main research questions, in how far there
are differences between the three classification approaches
(see Section V), and how the inter-annotator agreement of
the human classifiers relates to the agreement between the



human classifiers and the hashtag classifier (see Section VI),
before we conclude the paper.

II. RELATED WORK

It already exists quite a lot of work which deals with the
problem of classifying short text messages. The two main
challenges are the shortness and the sparseness of the texts
that should be classified. In other words, short texts are less
topic-focused, contain more noise, and they do not provide
enough word co-occurrences to compute similarities [7].
In general, one can distinguish between supervised and
unsupervised methods for classifying short texts.

Long et al. [1] proposed a semi-supervised classification
approach, exploiting transfer learning using Wikipedia as
external data. Yang et al. [5] classified tweets based on an
inference mechanism for combining texts with additional
sources of information. As a result, they assign tweets to
nodes in a pre-defined taxonomy. Ren et al. [4] dealt with the
hierarchical multi-label classification task for tweets using
structural support vector machine (SVM).

However, the supervised methods require a labeled train-
ing dataset, which introduces a bias of the classification
results towards the training data. In order to avoid such
a bias, we use in this paper an unsupervised classification
approach. A popular unsupervised approach for short text
classification is Latent Dirichlet Allocation (LDA) [6]. LDA
represents a document as a probability distribution over
the topics and a topic as a probability distribution over
the words in a document collection. A document may be
an individual tweet or an aggregation of all tweets of a
certain user [8]. Hong et al. [8] showed that LDA with
aggregated user tweets outperforms LDA with individual
tweets. Further examples of classifying aggregated user
tweets with LDA are available in [9], [10], [11]. Regarding
the content of tweets, Feng et al. [12] showed that the
textual content of the tweets is the most important feature
for hashtag recommendation. Less important features are the
URL links, mentions (i. e., user account names in tweets, like
“India’s @narendramodi tweets congratulatory wishes to
AAP’s @ArvindKejriwal”), and hashtag features. However,
the combination of all features performed best for hashtag
recommendation, where hashtag features slightly contributed
to improve recommendation performance.

With regard to how to use human annotators for classify-
ing tweets, there also exist some studies. Paul et al. [13] used
Amazon Mechanical Turk (AMT) for classifying tweets by
their purpose (i. e., whether it is a question or not). Each
tweet was labeled by two AMT workers. Finin et al. [14]
used AMT and CrowdFlower1 for named entity extraction
from tweets. In contrast, in this paper, at least ten partic-
ipants manually classify tweets according to their content.
Furthermore, we evaluate the inter-annotator agreement of
the participants.

1http://www.crowdflower.com/, last access: 08/06/2015

III. CLASSIFICATION APPROACHES

As stated in the introduction, we compare three classifica-
tion approaches for microblog postings, namely the hashtag-
classifier, the machine-classifier, and the human-classifier.

The hashtag-classifier uses the authors’ hashtags for
assigning tweets to classes. The approach can be divided
into two variants: single-label classification and multi-label
classification. In the single-label classification, each tweet
belongs to only one class. In contrast, in the multi-label
classification, each tweet can belong to several classes. Since
a tweet can be annotated with multiple hashtags, some
studies see the tweet classification problem as a multi-label
classification problem [4], [5]. However, we focus on the
single-label classification problem, in order to be better
comparable with the machine-classifier and the human-
classifier. It means that a tweet that is annotated with #apple
and #fruit is in another class than tweets that are only
annotated with one of the two hashtags, i. e., only with
#apple or #fruit.

The machine-classifier classifies tweets based on their
textual content. In this paper, we employ Latent Dirichlet
Allocation (LDA) [6]. We choose LDA, because it is an
unsupervised approach (see Section II). Following the results
shown in [8], we train the topic model over aggregated user
tweets, i .e., each document represents all tweets generated
by a single user. Subsequently, LDA infers for each tweet the
probability distribution over the topics from the previously
estimated topic model. Finally, we classify the tweets by K-
means clustering, which is also an unsupervised clustering
algorithm. For this purpose, we represent each tweet by a
vector which contains its topic probabilities, as they have
been inferred by LDA.

For the human-classifier, we asked human annotators to
manually classify tweets coming from one of ten different
topics as shown in Table I. During the classification, the
human annotator was able to see the textual content of
the tweets and, if available, the linked web pages (see
Section IV-C for more details). Since the tweet classification
is expected to highly depend on each human annotator’s
view, we collected data from 163 participants. Each tweet
is classified by at least ten participants.

IV. PREPARING THE EXPERIMENTS

In the following, we first describe the Twitter dataset used
in this paper. Then, in Section IV-B, we describe the experi-
ment for the machine-classifier. Finally, in Section IV-C, we
describe how we collected the tweet classifications by the
human annotators.

A. Used Twitter Dataset

We use the Tweets2011 dataset provided by TREC2. The
dataset contains approximately 16 million tweets sampled

2http://trec.nist.gov/data/tweets/, last access: 04/30/2015



Table I
TEN MAIN TOPIC/SUBTOPIC COMBINATIONS USED IN OUR

EXPERIMENTS, EACH CONSISTING OF 15 TWEETS. THE RIGHT COLUMN
SHOWS THE NUMBER OF HUMAN ANNOTATORS.

ID main topic subtopics participants
1 #health #nutrition, #news 20
2 #apple #iphone, #mac 18
3 #photography #nature, #art 15
4 #green #solar, #eco 14
5 #celebrity #news, #gossip 15
6 #fashion #news, #shoes 15
7 #fitness #health, #exercise 18
8 #humor #quotes, #funny 15
9 #quote #love, #life 16

10 #travel #lp, #tips 17

between Jan. 23 and Feb. 8, 2011. First, we randomly
sampled hashtags that occur at least 200 times. We see
them as main topics. Then, we identify the hashtags which
co-occur with one of the main topics at least four times
by four different users, and randomly select two of them
as subtopics. We removed domain-specific topics (e. g.,
“Liverpool”, “Photography-HDR” (high dynamic range),
“Rockmusic”), religious topics, bots (e. g., “#etsybot”), and
very general topics (e. g., “#backintheday”). From the re-
mainder, we randomly select ten of the main topic/subtopic
combinations for our experiments (see Table I).

As consequence of this sampling procedure, the tweets
of each topic combination can only contain three different
hashtags (e. g., main topic: “#apple”, subtopics: “#iphone”,
“#mac”). As we use a single-class classification built from
the tweets’ hashtags (see Section III), there are five possible
classes for the tweets (e. g., {#apple}, {#iphone}, {#mac},
{#apple, #iphone}, {#apple, #mac}). For each of these
classes, we randomly select three tweets, thus each topic
has 15 tweets. When randomly selecting the tweets, the
following constraints have been applied: (i) The tweets have
to come from different authors, (ii) links contained in the
tweet must not be broken, and (iii) the tweet must not be
spam (e. g., bot-generated advertisements). For the machine-
classifier and human-classifier, we remove the hashtags from
the tweets, in order to avoid a bias towards the hashtags. But
if a hashtag is a part of a sentence (e .g., “watch ten goals at
the #WorldCup.”), we remove only the hashtag symbol “#”
(i. e., “watch ten goals at the WorldCup.”). Because it would
destroy the sentence structure and perhaps its meaning.

B. Machine-Classifier

In the following, we describe the machine-classifier ex-
periments, including how we pre-processed the tweets, and
how we set the parameters for LDA and K-means clustering.
First, in order to generate the topic model, we discarded
tweets produced by users who have less than ten tweets

in the Tweets2011 dataset. The remaining tweets were
then pre-processed by tokenization, stop-word removal, and
stemming. Furthermore, we eliminated words that are used
by less than 25 users [15]. The topic model has been trained
on the resulting dataset of 1, 062, 419 tweets with 13, 840
unique words, coming from 60, 947 users.

For training the topic model, we use the LDA implemen-
tation JGibbLDA3. Along with Griffiths et al. [16], we set as
LDA parameters α = 1.00, β = 0.1. Regarding the number
of topics, we used the same value as in the experiments
described by Hong et al. [8]. The authors experimented with
LDA and found that it performed best at k = 50 topics on a
dataset with 1, 992, 758 tweets, which is of similar size and
characteristics to our dataset.

The topic model has then been trained over 2000 iter-
ations. Based on the estimated topic model, we computed
the topic probabilities for each of the tweets from our main
topic/subtopic combinations (see Table I). For computing
the similarities of the vectors, we use Euclidean distance.
Please note, the clustering results achieved with Euclidean
distance is identical with the results one observes with cosine
similarity.

Finally, the topic probabilities have been used for classi-
fying the tweets with the help of K-means clustering. The
number of clusters was optimized by Hartigan’s index and
Average Silhouette [17], following Yang et al. [18]. When
the two metrics disagree, we choose the number which is
closer to the average number of classes made by human
annotators (see Table III).

C. Human-Classifier

In order to collect the classification results for the human-
classifier, we have conducted an online experiment, where
participants manually classified tweets.4

1) Participants: In order to obtain the results of the
human-classifier, we recruited 163 participants (75 female)
through mailing lists. As incentive for participation, they
obtained information about their classification behavior at
the end of the experiment. The last column of Table I
shows the number of participants assigned to each topic.
The participants are on average 34.14 years old (SD: 10.76)
and rated their English skills with an average score of 7.66
(SD: 1.49) on a 10 point Likert scale, where higher is better.

2) Procedure: During the experiment, we asked the par-
ticipants to classify 15 tweets from one of the ten topic
combinations listed in Table I. The topic has been randomly
selected. Figure 1 shows a screenshot of the experiment web
page. During the experiment, the participants had access to
the textual contents of the tweets as well as to screenshots
of the webpages that are linked in the tweets. For classifying
the tweets, the participants were able to create an arbitrary

3http://jgibblda.sourceforge.net/, last access: 04/30/2015
4The dataset is available from: http://dx.doi.org/10.7802/82



Figure 1. The screenshot of the experimental web page for the human-classifier. In the left column, the 15 tweets to be classified are shown. The
participants can drag and drop the tweets into the right column to assign the tweets to one of their previously created labeled classes.

number of labeled classes. After assigning all tweets to
classes, the participants had to fill out a questionnaire.

V. AGREEMENTS BETWEEN CLASSIFIERS

In this section, we investigate how strong the agreements
between two classifiers are. First, we introduce Cohen’s
kappa, a measure of the reliability of the agreement, and
its interpretation. Subsequently, we show the results with
respect to each pair of the three classifiers.

A. Measure

We compute Cohen’s kappa κ to measure the reliability of
the agreement between two different classifier as Equation 1.

κ =
Pr(a)− Pr(e)

1− Pr(e)
(1)

Pr(a) denotes the relative observed agreement between two
classifiers. Pr(e) is the hypothetical probability of chance
agreement, which is calculated as the probabilities of each
classifier randomly assigning each class to tweets, using the
observed data. According to Landis et al. [19], κ ≤ 0 is
indicating no agreement, 0 < κ ≤ 0.2 a slight agreement,
0.2 < κ ≤ 0.4 a fair agreement, and 0.8 < κ ≤ 1

an almost perfect agreement. If the classifiers agree and
disagree completely, κ = 1 and κ = −1.

Since the number of classes and the number of tweets in
each class might be different depending on the classifiers,
we apply Cohen’s kappa to so-called match tables [20]
(see Table II). The top row of each table indicates how
the classifier groups the tweets. We see that the elements
are classified into three classes in the left table. If two
elements belong to the same class (e. g., a and b), then
the corresponding cell value is set to 1. Otherwise, the cell
value is set to 0. Based on the match tables in Table II,
Cohen’s kappa κ is computed as follows: Since six of the
ten cells in the two match tables are identical, Pr(a) = 0.60.
Furthermore, in the left table, two cells are set to 1 and eight
are set to 0. In the right table, it is four cells and six cells.
Thus, the probability that both tables contain a 1 in the same
cell is 0.08. For a cell value of 0, the probability is 0.48.
This results in Pr(e) = 0.08+ 0.48 = 0.56. Altogether, we
obtain a value of κ = 0.18 (see Equation 1).

In our experiments, we computed the corresponding
match tables for each of the topics and classifier separately,
i. e., we obtained match tables with 15 rows and columns
(one for each tweet). Furthermore, for each topic we ob-



Table II
AN EXAMPLE OF TWO MATCH TABLES (LEFT AND RIGHT) FOR TWEET

CLASSIFICATION. THEY ARE PRODUCED BY TWO DIFFERENT
CLASSIFIERS. A, B, C, D, E ARE THE CLASSIFIED TWEETS. THE SETS

{} INDICATE THE CLASSES.

{a, b}, {c, d}, {e}
a b c d

b 1
c 0 0
d 0 0 1
e 0 0 0 0

{a, b, c}, {d, e}
a b c d

b 1
c 1 1
d 0 0 0
e 0 0 0 1

Table III
THE NUMBER OF CLASSES AND NUMBER OF TWEETS PER CLASS

CREATED BY THE machine-classifier AND THE human-classifier.
STANDARD DEVIATIONS ARE PROVIDED IN PARENTHESES.

machine-classifier human-classifier
ID class tweets class tweets
1 3 5.00 (±4.58) 5.15 (±1.66) 2.91 (±2.24)
2 3 5.00 (±3.00) 3.11 (±1.13) 4.82 (±3.46)
3 4 3.75 (±2.06) 4.20 (±1.86) 3.57 (±3.15)
4 5 3.00 (±1.58) 4.93 (±1.44) 3.04 (±2.06)
5 6 2.50 (±1.97) 4.40 (±1.55) 3.41 (±3.91)
6 4 3.75 (±4.86) 3.73 (±1.53) 4.02 (±4.10)
7 5 3.00 (±2.12) 3.83 (±1.38) 3.91 (±3.53)
8 4 3.75 (±4.86) 4.07 (±1.16) 3.69 (±2.85)
9 6 2.50 (±1.38) 3.75 (±0.86) 4.00 (±2.92)

10 3 5.00 (±6.08) 2.94 (±1.14) 5.10 (±4.48)
M 4.30 3.73 4.01 3.85
SD 1.16 1.00 0.70 0.70

tained one match table for the hashtag-classifier, one for the
machine-classifier, and multiple match tables for the human-
classifier (one for each participant of the experiment). Given
these match tables, we then compute Cohen’s kappa pairwise
between each participant and one of the other two classifiers.
Subsequently, means and standard deviations of Cohen’s
kappa are calculated over all participants for each topic (see
Section V-B).

B. Results and Discussion

In Table III, the number of classes and the average number
of tweets per class are shown for the machine-classifier and
human-classifier. For the hashtag-classifier, the number of
classes and the number of tweets per class are consistently
5 and 3, as described in Section IV-A. These numbers are
quite similar to the average number of classes and tweets
per class for the machine-classifier (4.30 and 3.73) and the
human-classifier (4.01 and 3.85, cf. Table III).

All in all, it can be noted that there is a high standard
deviation for the number of assigned tweets per class for
the machine-classifier, i. e., it differs a lot between the dif-
ferent topics. In contrast, standard deviations of the human-
classifier are smaller. Thus, human annotators are more
likely to keep the distribution of the number of tweets
regardless of the topics.

Comparing hashtag-classifier and machine-classifier:
In Table IV, Cohen’s kappa is shown for comparing the top-

Table IV
COHEN’S KAPPAS FOR PAIRWISE COMPARISONS BETWEEN THE

CLASSIFIERS. FOR COHEN’S KAPPA INVOLVING human-classifier,
STANDARD DEVIATIONS ARE PROVIDED IN PARENTHESES.

ID hashtag and ma-
chine

hashtag and hu-
man

machine and hu-
man

1 -0.05 0.12 (±0.08) 0.00 (±0.06)
2 0.02 0.05 (±0.14) 0.05 (±0.19)
3 0.24 0.06 (±0.09) 0.11 (±0.14)
4 0.01 0.11 (±0.14) 0.00 (±0.10)
5 0.00 0.07 (±0.05) -0.04 (±0.04)
6 0.00 0.15 (±0.13) 0.04 (±0.12)
7 0.04 0.09 (±0.10) 0.05 (±0.10)
8 -0.04 0.17 (±0.13) 0.03 (±0.12)
9 -0.02 0.13 (±0.07) 0.00 (±0.06)

10 0.01 0.10 (±0.08) 0.45 (±0.25)
M 0.02 0.10 0.07
SD 0.08 0.10 0.12

ics’ match tables of the hashtag-classifier and the machine-
classifier. Overall, there is almost no agreement between
the classifiers. However, we observe a fair agreement for
topic 3 “#photography”. A possible reason is that 11 of the
15 tweets in this topic use the hashtags also as a word in
their textual content (e .g., “photography”, “art”). Thus, the
tweet classification by the machine-classifier is fairly close
to the one made by the hashtag-classifier for this topic.
Nevertheless, it is all in all difficult for the machine learning
approach to reproduce the tweet classifications made by the
authors’ hashtags.

Comparing hashtag-classifier and human-classifier:
Table IV also contains the Cohen’s kappa values for compar-
ing the hashtag-classifier to each of the human-classifiers.
For all the topics, we consistently observe a slight agreement
between the two classifiers.

Comparing machine-classifier and human-classifier:
Finally, Table IV also contains the comparison between
the machine-classifier and each of the human-classifiers.
Overall, for most of the topics, there is almost no agreement
between the classifiers. However, the classifiers have a
moderate agreement for topic 10 “#travel”, whose subtopics
are “#lp”, referring to Lonely Planet, a travel publisher, and
“#tips”. While the tweets which only contain the hashtag
“#tips” are apparently about different topics, almost all other
tweets are about travel because they either contain “#travel”
or “#lp” as a hashtag. Thus, the different classes are clearly
separated for this topic, leading to almost the same number
of classes for the machine-classifier and human-classifier
(cf. Table III). Furthermore, a high standard deviation in the
number of tweets per class can be observed in Table III,
which indicates that there is a dominant class for this topic.

VI. AGREEMENT AMONG HUMAN-CLASSIFIERS

In this section, we analyze the inter-annotator agreement
between the participants of the human-classifier experiment.
Additionally, we investigate whether the huma-classifier



is more similar to the hashtag-classifier or the machine-
classifier.

A. Measures

For measuring the inter-annotator agreement of the human
annotators, we use Fleiss’ kappa. Additionally, we compute
purity, conditional entropy, and Normalized Mutual Informa-
tion (NMI). For these measures, we use the classifications
of the hashtag-classifier and the machine-classifier as gold
standards.

Fleiss’ kappa: We use Fleiss’ kappa κ to assess the
inter-annotator agreement of the human annotators for the
different topics. In contrast to Cohen’s kappa, which mea-
sures the agreement between two classifiers, Fleiss’ kappa
can be used for measuring the agreement between more
than two classifiers [21]. Fleiss’ kappa is computed by
Equation 2.

κ =
Pr(a)− Pr(e)

1− Pr(e)
(2)

Pr(a) denotes the agreement between more than two classi-
fiers, which are in our case the different human annotators.
Pr(e) is the probability of chance agreement between the
classifiers. Fleiss’ kappa is interpreted in the same way as
Cohen’s kappa.

Purity: Purity measures the overall precision of the
elements assigned to clusters [22]. The purity of a cluster
ci ∈ C, where C = {c1, . . . , ck} is defined by Equation 3.

Purity(ci) =
1

|ci|
·maxh|ci ∩ ah| (3)

ah denotes a cluster from the gold standard, which are
in our case the hashtag-classifier or the machine-classifier.
Purity simply measures how many tweets from cluster ci are
contained in the most similar cluster from the gold standard,
and puts this into relation to the overall size of cluster ci.
Given this purity for a single cluster ci, the purity of the
entire clustering is computed by Equation 4.

Purity(C) =

k∑
i=1

|ci|
N
· Purity(ci) (4)

N denotes the number of elements in the dataset and k
the number of clusters in C that are compared to the gold
standard. In our case, N = 15 because for each topic
15 tweets have been classified. Purity results in a value
between 0 and 1, where a value closer to 1 implies a
better agreement between the tested clustering and the gold
standard.

Conditional Entropy: Conditional entropy measures
how the elements are distributed within the cluster ci given
the various classes ah from the gold standard [22]. The

conditional entropy for a certain cluster ci is defined by
Equation 5.

H(ci|A) = −
l∑

h=1

P (ah|ci) · logP (ah|ci), (5)

l denotes the number of clusters contained in the gold
standard. The conditional entropy of the whole clustering C
is then defined as the sum of the individual cluster entropies
weighted according to the cluster size (see Equation 6).

H(C|A) =
k∑

i=1

|ci|
N
·H(ci|A) (6)

The conditional entropy results in values between 0 and
1. A value closer to 0 shows a better agreement between
clustering C and the gold standard, because it implies that
the elements from the classes ah are not distributed over
different clusters ci.

Normalized Mutual Information (NMI): A high purity
is easy to achieve if the number of clusters is large, i. e.,
when there are only few elements per cluster. In contrast,
the conditional entropy is negatively influenced if there is a
larger difference between the number of classes in C and in
A. To overcome these drawbacks, we use Normalized Mu-
tual Information (NMI) [23] (see Equation 7). It represents
the mutual agreement between two classifiers.

NMI =
2 · I(C;A)

H(C) +H(A)
, (7)

I(C;A) denotes the mutual information of the two cluster-
ings C and A, as defined in Equation 8. H(C) and H(A)
denotes the entropy of the marginal distributions in the two
clusterings, as defined in Equation 9.

I(C;A) =

k∑
i=1

l∑
h=1

|ci ∩ ah|
N

· log |ci ∩ ah|
|ci| · |ah|

(8)

H(C) = −
k∑

i=1

|ci|
N

log
|ci|
N

(9)

NMI results in values between 0 and 1, where a value
closer to 1 implies a better agreement between the clustering
C and the gold standard A.

B. Results

Fleiss’ kappa: Table V shows the inter-annotator agree-
ment between the human annotators, as it is measured by
Fleiss’ kappa. As one can see, the results highly depend on
the topic. However, for all topics, the inter-annotator agree-
ment of the human annotators is consistently higher than the
agreement between the human annotators and the hashtag-
classifier (see the middle column in Table IV) and/or the
machine-classifier (see the right column in Table IV). Thus,
human annotators are more likely to classify tweets like



Table VI
PURITY, CONDITIONAL ENTROPY, AND NORMALIZED MUTUAL INFORMATION (NMI) OF human-classifier USING hashtag-classifier OR

machine-classifier AS GOLD STANDARD. STANDARD DEVIATIONS ARE PROVIDED IN PARENTHESES.

(a) hashtag-classifier (b) machine-classifier
ID (a1) Purity (a2) Entropy (a3) NMI (b1) Purity (b2) Entropy (b3) NMI
1 0.66 (±0.11) 0.38 (±0.06) 0.51 (±0.11) 0.49 (±0.14) 0.71 (±0.10) 0.24 (±0.09)
2 0.72 (±0.17) 0.41 (±0.23) 0.30 (±0.19) 0.65 (±0.20) 0.57 (±0.28) 0.22 (±0.19)
3 0.69 (±0.15) 0.39 (±0.16) 0.38 (±0.18) 0.65 (±0.14) 0.45 (±0.17) 0.35 (±0.18)
4 0.64 (±0.10) 0.43 (±0.15) 0.48 (±0.15) 0.58 (±0.09) 0.55 (±0.11) 0.38 (±0.11)
5 0.77 (±0.14) 0.25 (±0.12) 0.44 (±0.06) 0.77 (±0.09) 0.36 (±0.05) 0.34 (±0.09)
6 0.84 (±0.11) 0.21 (±0.11) 0.44 (±0.20) 0.71 (±0.16) 0.50 (±0.21) 0.24 (±0.13)
7 0.75 (±0.14) 0.34 (±0.17) 0.40 (±0.16) 0.74 (±0.15) 0.41 (±0.16) 0.36 (±0.15)
8 0.75 (±0.10) 0.34 (±0.12) 0.48 (±0.17) 0.60 (±0.14) 0.62 (±0.17) 0.28 (±0.09)
9 0.76 (±0.09) 0.34 (±0.11) 0.46 (±0.06) 0.68 (±0.12) 0.45 (±0.15) 0.36 (±0.08)

10 0.86 (±0.14) 0.21 (±0.16) 0.39 (±0.16) 0.85 (±0.10) 0.34 (±0.18) 0.46 (±0.22)
M 0.74 0.33 0.43 0.67 0.50 0.32
SD 0.13 0.14 0.14 0.13 0.16 0.13

Table V
FLEISS’ KAPPA FOR MEASURING THE AGREEMENTS AMONG HUMAN

ANNOTATORS ON HOW THEY CLASSIFY TWEETS.

ID Fleiss’ kappa
1 0.17
2 0.10
3 0.13
4 0.16
5 0.53
6 0.20
7 0.14
8 0.31
9 0.33
10 0.38
M 0.25
SD 0.14

other human annotators than like the tweets authors and/or
a machine learning approach.

Looking into the results for each topic, the best Fleiss’
kappa is achieved for topic 5 “#celebrity”, indicating a
moderate agreement between the human annotators. This
topic includes two tweets that are very different from the
other tweets in the topic. As a result, 11 of the 15 human
annotators created two specific classes “economy” and “sci-
ence” for these two tweets, and put none of the other tweets
into these classes. This explains the high inter-annotator
agreement for topic 5.

Purity: Table VI contains the purity values for compar-
ing the human-classifier to the gold standard defined by the
hashtag-classifier (column (a1)) and the machine-classifier
(column (b1)). The results show that the human-classifier is
more similar to the hashtag-classifier than to the machine-
classifier. In order to determine whether the differences
between the purity values are significant, we run a mixed
ANOVA test with one between subject factor (i. e., topics)
and one within subject factor (i. e., the classifiers). The anal-
ysis reveals that all factors including topics (F (0.03, 0.23) =
7.43, p = .00), classifiers (F (0.00, 0.43) = 94.36, p = .00),
and the interaction of the two factors (F (0.00, 0.23) = 6.81,

p = .00) significantly differ. Thus, the purity values are
significantly better when the hashtag-classifier is used as
the gold standard. Details are omitted here for reasons of
brevity.

Conditional Entropy: Table VI also contains the con-
ditional entropy values for comparing the human-classifier
to the hashtag-classifier (column (a2)) and the machine-
classifier (column (b2)). Since lower entropy values indicate
a better agreement between two clusterings, also these
results show that the human-classifier is more similar to the
hashtag-classifier than to the machine-classifier. Again, a
mixed ANOVA test shows that the differences are significant
for all factors, i. e., for topics (F (0.04, 0.27) = 6.47,
p = .00), classifiers (F (0.01, 2.18) = 229.24, p = .00),
and the interaction of the two factors (F (0.00, 0.08) = 8.24,
p = .00).

Normalized Mutual Information (NMI): The NMI val-
ues for comparing the human-classifier to the hashtag-
classifier and the machine-classifier are contained in the
columns (a3) and (b3) in Table VI. Also the NMI shows that
the human-classifier is more similar to the hashtag-classifier.
A mixed ANOVA test shows that the differences are signif-
icant for all factors, i. e., for topics (F (0.03, 0.08) = 2.33,
p = .02), classifiers (F (0.01, 0.89) = 101.39, p = .00), and
the interaction of the two factors (F (0.01, 0.09) = 9.71,
p = .00).

C. Discussion

The results of our experiment show that the human-
classifier is consistently more similar to the hashtag-
classifier than to the machine-classifier, independent of the
used measure and topic. Nevertheless, we also showed
that this agreement between the human-classifier and the
hashtag-classifier is not as good as the inter-annotator agree-
ment between the different human annotators (cf. Table IV
and V).

Thus, any experiment on tweets classification should be
handled with care regarding the gold standard used. The



researchers should be aware in their discussion of evaluation
results, whether the authors’ hashtags or human annotations
are used as a gold standard.

One might even argue that in general it is more reasonable
to use human annotations as a gold standard because the
authors’ hashtags are created in a highly distributed fashion
by many different individuals, thus resulting in tweet anno-
tations based on varying criteria. At least, researchers who
use the hashtag-classifier as their gold standard, like [2],
could explicitly reflect on that difference in their discussions.
In this line, we contribute to the recent discussion on how
to conduct evaluations in social media research [24], where
a gold standard is typically not easily available or absent at
all.

VII. CONCLUSIONS

In this paper, we compared three approaches for clas-
sifying tweets, namely using authors’ hashtags, machine
learning (LDA), and human annotators. In our experiments,
there has been no agreement between the clustering achieved
with LDA and the clustering by authors’ hashtags. This
shows that it is quite hard to reproduce the clustering given
by authors’ hashtags with a state-of-the-art unsupervised
machine learning approach, like LDA, that only gets the
textual content of the tweets as its input data.

On the other hand, there has been a slight agreement
between the classifications by LDA and by the human
annotators. This shows that it is not impossible to extract
meaningful classifications with LDA, even though the clas-
sifications differ from the authors’ hashtags.

This difference between the evaluation results, depending
on whether we use authors’ hashtags or human annotators
as a gold standard, seems to be caused by a fundamental
difference between the two gold standards. This fundamental
difference is indicated by our observation that the inter-
annotator agreement between the human annotators is much
higher than the agreement between the human annotators
and the authors’ hashtags.

Therefore, we argue that researchers should reflect in
their discussions of tweet classification results, whether they
are compared to a gold standard consisting of the authors’
hashtags or to human annotations. As the authors’ hashtags
are created by many different users and thus come from
various different contexts and cultures, one might even argue
that in general it is more reasonable to use a gold standard
made by human annotators for tweet classification tasks.
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APPENDIX: QUALITATIVE ANALYSIS

For the human-classifier, we have manually investigated
how the human annotators classified the tweets by looking
into the labels of the classes. Our analysis revealed that
some participants classified tweets by their subjective views
rather than the topics of the tweets. For instance, several
participants created classes like “interesting” and “not in-
teresting”, and assign tweets to either of them. In addition,
some participants created classes by purposes of tweets, like
“advertisement”.

In order to further assess this qualitative analysis, we clus-
ter annotators showing similar grouping behavior. First, we
converted the match tables shown in Table II into numeric
vectors whose elements are 0 or 1, and which correspond
to the cell values of the match table. Subsequently, we
run a K-means clustering on the vectors. We optimized the
number of clusters by using Hartigan’s index and Average
Silhouette [17]. When the two metrics disagree, we chose
the smaller number of clusters. Table VII shows the number
of clusters resulting from this procedure with respect to each
topic. Overall, the number of clusters lies between 2 and 4
per topic, i. e., there exist two to four different kinds of how
the human annotators classified the tweets of a topic.

Subsequently, we manually looked into each of the identi-
fied clusters for patterns regarding how participants classify
tweets. We observe that human annotators, who produce the
same number of classes, i. e., belong to the same cluster,
show a similar grouping strategy. Thus, the number of
clusters seems to discriminate the different classification
behaviours of the human annotators.

Table VII
CLUSTERING OF human-classifiers. EACH CLUSTER REPRESENTS A SET

OF ANNOTATORS WITH SIMILAR BEHAVIOR OF GROUPING THE TWEETS.

ID # of clusters
1 2
2 2
3 2
4 4
5 3
6 3
7 2
8 3
9 3

10 3
M 2.70
SD 0.67

One hypothesis with regard to how human annotators
classify tweets would be that they are influenced by textual
similarities and/or word occurrences in the tweets. In order
to further investigate this hypothesis, we also compute the
cosine similarities between the tweets that belong to the
same class. However, the cosine similarities between tweets
from the same class are very low, i. e., on average 0.06.
Applying lemmatisation and stopword removal even led to
a further decrease of the cosine similarities.

The tweets used in our experiments were selected such
that they cover different topics. For some topics the tweets
might be easier to classify than for others (e .g., the topic
5 on “#celebrity” has the highest agreement among human
classifiers, see Table V). Thus, we investigated whether the
understandability of the different topics may have some
influence on the experimental results. To this end, we asked
the participants in the final questionnaire to assess the
understandability of the tweets on a 10-point Likert scale,
where higher values indicate higher understandability. On
average, the participants evaluate the understandability of
the tweets of one topic with 7.37 (SD: 1.93). Statistical
tests reveal no significant difference between topics (results
omitted for brevity). Thus, one can exclude that some topics
were more difficult to understand than others.


