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Abstract. Metadata describing the content of photos are of high im-
portance for applications like image search or as part of training sets
for object detection algorithms. In this work, we apply tags to image re-
gions for a more detailed description of the photo semantics. This region
labeling is performed without additional effort from the user, just from
analyzing eye tracking data, recorded while users are playing a gaze-
controlled game. In the game EyeGrab, users classify and rate photos
falling down the screen. The photos are classified according to a given
category under time pressure. The game has been evaluated in a study
with 54 subjects. The results show that it is possible to assign the given
categories to image regions with a precision of up to 61%. This shows that
we can perform an almost equally good region labeling using an immer-
sive environment like in EyeGrab compared to a previous classification
experiment that was much more controlled.

1 Introduction

The management of digital images is a challenging task, and it is often performed
based on metadata. For example, image search makes use of tags manually as-
signed to images or extracted from surrounding text information on web pages.
A more detailed description of photo contents by region labeling can improve the
search [4]. Different approaches were investigated for creating region labels. On
the one hand, fully automatic approaches are far from delivering results that are
on the level of human understanding of visual content [11]. On the other hand,
manual labeling is a tedious task for users. The general idea behind our approach
is to create image meta information without additional effort from the user. To
reach this goal, we exploit the information gained from eye movements, while
the user is viewing photos in the context of a specific task. In our first work [15],
the data was collected in a controlled experiment. In this first experiment, a tag
was first presented to the user, and afterwards, he/she had to decide whether
an object described by this tag could be seen on the photo by pressing a key
on the keyboard. We obtained a maximum precision of 65% at pixel level from
comparing the calculated regions with manually created ground truth regions.
In this work, we evaluate if region labeling is also possible in a very different



scenario, while the user is playing a game. As in the first experiment, the task
is to decide whether an object, belonging to a given category, can be seen on a
photo. While in the first study, the user had no time constraints and the photos
were displayed full screen, the game EyeGrab [13] was developed to demand fast
decision making from the participants and to break up the full concentration on
photo viewing by bringing the user into the immersive situation of a game with
distractions from the game setup, the gaze control, and the emotional pressure
of success and failure. In EyeGrab, users classify and rate photos falling down
the screen. Photos are selected by fixation them fixated with the eyes. Subse-
quently, the classification is performed by fixating specific objects on the screen.
In addition, the classification comprises a personal rating of the photo. By an-
alyzing the recorded gaze paths, we are able to automatically assign the given
category, which describes a specific object like “car” or “tree” to an image re-
gion. To evaluate our approach, we have collected gaze data in a user study with
54 participants. All photos used in our evaluation had ground truth informa-
tion concerning their classification and the depicted objects and image regions,
respectively. We can state that the level of difficulty playing EyeGrab was not
too high as only 7% of the shown images passed without classification and 90%
of the classifications were correct with respect to the given category. In order
to assign a given category to an image region, we apply two gaze measures and
a baseline [15]. The measures predict which region of the photo is assumed to
show an object, belonging to the category. This region is compared at pixel level
with the ground truth image region from our data set. From the data collected
in EyeGrab, we obtain a maximum precision of 61% of correctly labeled image
region pixels. Thus, region labeling in the immersive environment of a game per-
forms almost equally well as in previous work, where we considered non-moving
full-screen images and could predict the regions with precision of about 65% [15].
We have also investigated different falling speed levels for analyzing the influ-
ence of speed in the region labeling results. We got a slightly higher number
of photos passing without classification or those classified incorrectly for faster
speed levels, but only small variations in the precision of the region labeling are
observed. Overall, this study shows that one can obtain good region labels in an
immersive game environment and that the results are comparable to those where
the images were not moving and the experiment was much more restricted.

Please note that we provide the experiment images and gaze data on http:

//west.uni-koblenz.de/Research/DataSets/gaze.

2 Related Work

One approach for gaining information from gaze data is relevance feedback in
image search. Kozma et al. [5] compared image selection by implicit gaze feed-
back with explicit user feedback by clicking on relevant images. Gaze information
in combination with image segmentation also provides valuable information for
photo cropping [9]. Klami et al. [3] identified heat-map-like image regions rele-
vant in a specific task using gaze information. The given task is very general,



and thus, the work does not aim at identifying single objects in the images from
the generated heat map. Our previous work [15] showed that it is possible to
assign given tags to image regions for describing depicted objects. However, the
data was collected in a controlled experiment with static photos and without
gaze control. Smith and Graham [10] described the advantages of gaze control in
video games. They state that the use of gaze control can improve the game play
experience. An example is EyeAsteroids1, an eye-controlled arcade game pre-
sented by Tobii. The game is entertaining but does not have the goal to exploit
the users’ activities while playing. Games with a purpose (GWAPs) are computer
games that have the goal to obtain information from humans in an entertaining
way. The information is usually easy to create for humans, but challenging or
impossible to be created by fully automatic approaches. An example of a GWAP
is the game Peekaboom [12], presented by von Ahn et al. Two users playing to-
gether try to label the same image regions for a given tag. Ni et al. [7] introduced
a game for explicitly labeling image regions. The users look for specific objects
in photos taken from Flickr and mark them by drawing bounding boxes. The
development of eye tracking hardware in the recent years supports the usage of
gaze control in everyday device like laptops in the near future. Systems that can
detect the eyes and can calculate the viewing direction from cameras integrated
in common devices like tablet PCs are already on the market (e. g., Natural User
Interface Technology, OKAO Vision2). Lin et al. [6] presented an eye tracking
system using a web cam that is even working in real-time. Thus, the role of eye
tracking as input device for controlling software and for collecting information
from it’s data is increasing.

3 Gaze-Based Measures for Labeling Image Regions

In this work, we apply two gaze-based measures for labeling image regions and
one baseline measure, all introduced in previous work [15]. The two gaze-based
measures are the segmentation measure (I) and the heat map measure (II). By
means of these measures, we assign a given category to an image region for la-
beling this region. An overview of both measures is depicted in Figure 1. For all
photos belonging to the given category, the input for the gaze analysis are (i)
the given category and (ii) the gaze paths of all users who correctly classified
the photo. The segmentation measure additionally takes (iii) automatically ob-
tained (hierarchical) photo segments as input data. These photo segments are
obtained from applying the bPb-owt-ucm algorithm [1]. The different hierar-
chy levels describe different levels of detail and are controlled by the parameter
k = 0, 0.1, . . . 0.5.

In the segmentation approach, the fixations on every region of the segmented
photo are counted, which corresponds to the fixation measure fixationCount.
The segment with the highest outcome is assumed to show the object for the
given category. In order to take the inaccuracies in the eye tracking data into

1 http://www.tobii.com/en/gaze-interaction/global/demo-room/tobii-eyeasteroids/
2 http://www.omron.com



Fig. 1. Gaze-based region labeling with two measures I and II. Input data is (i) the
given category, (ii) the users’ gaze paths, and (iii) the segmented image (only for I).

account, we apply region extension and weighting introduced earlier [15]. The
region extension considers fixations in the surrounding of up to 13 pixels of an
segment as being on the segment. Due to the weighting results for segments that
are smaller than 5% of the photo are multiplied by a factor up to 4. Different
segmentation levels k = 0, 0.1, . . . 0.5 are considered in our analysis. The heat
map approach identifies intensively viewed photo regions by summing up the
fixations of all gaze paths at pixel level. A value of 100 is applied to the center of
each fixation. In a radius of 50 pixels, linear decreasing values are applied to the
surrounding pixels. From the created heat map, the object region is calculated
by applying a threshold to the data, identifying the mostly viewed pixels. The
parameter t indicates the percentage of viewing intensity (e.g. t = 5 indicates
the 5% of all pixels with the highest values). After the thresholding, the biggest
area of connected pixels is assumed to depict the object. The concrete parameter
values for both approaches are determined based on the findings in our previous
work [15]. The center baseline approach from earlier work [15] is also applied to
the data. The element in the center of the segmented photo is considered as a
depiction of the object.

By means of ground truth data for the image regions and labels (cf. Sec-
tion 5), we are able to evaluate the computed object regions. For every pixel,
we compare the ground truth with the label obtained from our measures by cal-
culating precision, recall, and F-measure, with F-measure = 2 · precision·recall

precision+recall .
An example photo with two object regions and their evaluation can be found in
Figure 2.



Fig. 2. Comparing labeled image regions and ground truth regions at pixel level.

4 The EyeGrab Game

The task in EyeGrab to “clean up an aliens’ universe” by categorizing and rating
photos. Before starting the game, users have to calibrate the eye tracking device
by fixating several points on the screen. Subsequently, a small introduction to
the game’s rules is given to the gamer. In addition, he/she has to choose a user
name and to indicate his gender as depicted in Figure 3(a). Besides entering the
gamer’s nickname, the game is solely controlled by eye movements. Gaze-based
interactions are triggered after a dwell time of 450 m. The ocular dwell time of
fixations lies between 200 and 400 ms [2]. Hence, the selection dwell time lies
above this value to avoid random selections. For example, the selection of the
gender is done by focusing on a male or female character as shown in Figure 3(a).
The gender information is used only for adapting the gaming environment, e.g.,
by changing some colors.

A game consists of several rounds. In each round, a set of photos has to be
classified concerning a given category like “car”, “person”, and “sky”. First, the
category is presented to the user for 6 s. Subsequently, the photos fall down the
screen as depicted in Figure 3(b) and are classified by the gamers. Each round
has a different speed level at which the photos move. Several photos can be
shown on the screen at the same time. The player selects an image by fixating
it for longer than the dwell time of 450 ms. As soon as a photo is selected, it
is highlighted by a thin frame, and the user can classify it into one of three
categories. The classification takes place by fixating symbols on the screen as
shown in Figure 3 (b). The categories are “not relevant” (symbolized by a trash
can), “relevant & like” (symbolized by a hand pointing upward), and “relevant
& dislike” (symbolized by a hand pointing downward). Playing EyeGrab, the
gamer scores for each correctly categorized image, receives negative points for
each wrong one, and no points for images that fell off the screen without classifi-
cation. No scores are obtained for the ratings of “like” and “dislike”. An acoustic
feedback is given for each classification. An applause is played for correct classifi-
cations, while a booing sound signals incorrect classifications and missed photos.
A high score list is presented to the user at the end of the game.



(a) Entering of personal information (b) Playing screen

Fig. 3. Screen shots from EyeGrab.

5 Experiment Description

EyeGrab has been evaluated with 54 subjects (with 19 female). The subjects’
ages were between 17 and 56 years (avg = 30 years, SD = 7.7). The majority of
the participants were students or research fellows in computer science (70%), but
students from other fields of study or members of other professional groups like
restorers or psychotherapists participated in the experiment as well. Most sub-
jects enjoyed playing the game. In a questionnaire subsequent to the experiment,
49 of the 54 subjects rated the statement “The game is fun.” with a 4 or a 5 on
a standard 5-point Lickert scale (avg = 4.22, SD = 0.72). The level of difficulty
playing EyeGrab seems to have been adequate, as most of the participants did
not agree with the statement “The game overexerts me.” (M = 2.54, SD = 1).
Most of the participants did not feel uncomfortable using the eye tracking device
as shown by the low average agreement of 2.24 (SD = 1.15) to the statement
“The eye tracker has a negative impact on my well-being.”

Procedure. Every participant played four rounds of EyeGrab. The first round
was a short test round consisting of only 12 photos. This test round with the
category “tree” served as an introduction to the game. The data collected during
this round was not used in the later analysis. The other three rounds with the
categories “car”, “person”, and “sky” consisted of 24 photos each. The photos of
each round were displayed in a randomized order. Different falling speeds were
applied to each round. In the slowest pace (speed 1) the photos were falling with
3.6 pixels/ms, and they were visible on the screen for 5200 ms. In the medium
pace (speed 2), the photos were visible for 4500 ms (pace = 4.3 pixels/ms). In
the most challenging speed (speed 3) the photos were falling down within only
3800 ms (5 pixels/ms). A complete round took between 64,4 s (speed 1) and
50 s (speed 3). A Latin Square design was used in order to randomize the order
of the three categories with the three different speed levels. The participants
were asked to express their agreement to several statements on a 5-point Likert
scale between 1 (strongly disagree) and 5 (strongly agree) in a questionnaire at
the end of the experiment. The experiment was performed on a screen with a



resolution of 1680 × 1050 pixels. The subjects’ eye movements were recorded
with a Tobii X60 eye tracker at a data rate of 60 Hz.

Data Set: Categories and Photos. The categories used in EyeGrab were taken
from the top six of the list with the mostly used tags in LabelMe [8]. The LabelMe
data set consists of photos, uploaded by the community, and has manually drawn
region labels. The first two categories of this list (“window” and “building”) are
not taken into account because often not all instances of these objects are labeled
on the photos. This could cause problems during the evaluation of our approach,
as we need ground truth data with a complete labeling of all occurring objects
belonging to the given category. Thus, we have taken the next top categories,
which are the above-mentioned categories of “car”, “person”, and “sky”.

In total, 84 photos (24 for each round and 12 for the test round) were selected
from the image hosting page Flickr3 and from LabelMe [8]. To create a challenge
for the gamers, only 50% of the selected photos actually belonged to the given
category. Thus, half of the photos were randomly chosen from the photos tagged
with the given category, the other half from all other photos. An additional
criterion for the selected photos was a minimum size of 450 pixels for one of the
photo dimensions. All photos were scaled such that the longer edge has a length
of 450 pixels. The 46 photos from Flickr belonged to the ones labeled as the most
“interesting”. For all photos in our experiment, we need ground truth information
regarding the region labels. For the LabelMe images, manually drawn polygons
describing the shapes of the depicted objects are part of the data set. Some
photos had to be replaced after a manual check because not all occurrences of
an object were labeled or an object described by the given category was depicted,
although the photos were not labeled with it. For the Flickr images, the ground
truth region labels were manually created by a volunteer not involved in the
research.

6 Photo Classification Results

Excluding the test round, 72 photos in the three rounds were viewed by each
subject. This makes a total of 3,888 photo views. In 260 cases (7%), the photo
passed without classification, resulting in a total of 3,628 classified photos. 3,279
images (90%) were correctly classified. Overall, we had 1,624 correct classifica-
tions for photos belonging to the given category (true-positive), 1,655 correct
classifications for photos not belonging to the given category (true-negative).
Meanwhile, 241 classifications were false-negative (photo belonged to the cate-
gory but was classified as not), and 108 classifications were false-positive, which
leads to a precision of 94% and a recall of 87% over all users. The number of
incorrect assignments per image lies between 2 and 40 with an average of 4. The
three photos with the lowest error rate and the three photos with the highest
error rate are depicted in Figure 4.

3 http://www.flickr.com/



Fig. 4. Upper row: the three photos with the lowest number of correct classifications.
Lower row: the photos with the highest number of correct classifications. All photos
show an object described by the given category.

When comparing the error rate for different speed levels, we see that the
number of unassigned or incorrectly assigned photos is increasing with the falling
speed of the photos. The number of not-assigned photos is increasing from 7%
to 12%. The number of incorrectly assigned photos is increasing from 4% to
11%. The number of unassigned photos is increasing more strongly than the
incorrectly assigned photos. Thus, the subjects are still capable of deciding if
an image belongs to a category or not, even with a higher speed level. However,
they run out of time to focus each image for classification.

We compare the classification results of EyeGrab with results from the photo
classifications in our previous experiment [15]. In the previous experiment, a
specific tag was first presented to the subjects. Subsequently, a photo was pre-
sented to the user who had to decide whether an object described by the given
tag is depicted. The decision was made by pressing a key on the keyboard. Of
all classification, 5.4% were incorrect. In this work, 10% of all classifications are
incorrect over all speeds. The slowest speed level with an error rate of 7% is close
to the results observed in previous work [15].

The subjects were asked in the questionnaire how much effort they put into
the subjective classification of the photos into “like” and “dislike”. They an-
swered this question with a mean value of 3.43 (SD = 1.35), which shows that
their effort was not very high. Of the photos, 62% were rated as “like”, the rest
as “dislike”. Of the Flickr images, 70%, were liked in comparison with 56% of
the LabelMe images. As the Flickr photos were selected from the most inter-
esting, we can assume that they are more attractive to most viewers than the
LabelMe photos. This assumption is only reflected slightly in the rating results.



In summary, the user gave a rating, but it does not seem to be of high quality.
Thus, the rating information is not further considered in the remainder of the
paper.

7 Photo Labeling Results

We evaluate our approach by analyzing the region labeling for all photos using
the aggregated data of all users who correctly classified a photo. In Figure 5, the
results for the region labeling using the different eye tracking-based measures are
depicted by comparing precision and recall, as well as precision and F-measure.
The best precision with 61% is obtained for the segmentation measure with pa-
rameter k = 0, which corresponds to very small segments. The highest precision
for the heat map measure is obtained for t = 1 with 59%; for the baseline ap-
proach is only 19% (k = 0). The best recall results are 96% for the heat map
measure with t = 100, 70% for segmentation measure with k = 0.5, and 53%
for the baseline with also k = 0.5. We also look into the F-measure results to
consider both, precision and recall. The overall best F-measure is obtained by
the segmentation approach with 32% (k = 85), followed by the heat map ap-
proach with 31% (k = 0.5). The baseline approach clearly performs weaker, with
a maximum result of 21% (k = 0.5). We applied a Friedman test to compare
the results for the best performing parameters. We found that the differences
are significant (α < .05) for precision (χ2(2) = 15.436, p = .000) and F-measure
(χ2(2) = 18.048, p = .000). A post-hoc analysis with pairwise Wilcoxon tests
with a Bonferroni correction (α < .017) showed two significant results for preci-
sion between heat map and baseline (Z = −3.527, p = .000) and segmentation
and baseline (Z = −3.704, p = .000). No significance was measured in the post-
hoc test for F-measures.

The results vary for the three categories “car”, “person”, and “sky”. For
example, the precision values for k = 0 are pcar = 0.79, pperson = 0.28, and
psky = 0.76. This range of results seems to be caused by the sizes of the ob-
jects. The average size of the ground truth objects of the different categories
are (compared with the whole image size) as follows: sizecar = 11.5% (SD =
8.3%) , sizeperson = 11.7% (SD = 19.9%), and sizesky = 42.8% (SD = 23.1%).
Although the sizecar and sizeperson are similar, the high standard derivation
for “person” shows that the object sizes vary strongly. Very small objects are
known to complicate the region labeling [14].

In addition, we analyzed the region labeling results for the different falling
speeds. A faster falling speed increases the pressure on the user to perform the
classification. A summary of the results for the different speed levels can be found
in Figure 6. It shows that the falling speed does not have a high impact on the
precision and F-measure. For both eye tracking measures, the medium speed
level delivers the best results. However, only minor differences can be noticed.
Please note that the results for all speeds are not the average of all speed levels
as the region labeling for the different speed levels is done with only one-third
of the data. This is caused by the fact that every user played the game in three



Fig. 5. Precision, recall, and F-measure results for the three labeling approaches. The
curves are limited by the investigated parameters (e.g., the Center Baseline by the
number of segmentation levels).

different speed levels (cf. Section 5). We conclude that the influence of the speed
on the region labeling results is, at the least, not strong.

Fig. 6. Region labeling results for different falling speeds.

8 Comparison with Previous Results

We have compared the results in terms of precision and F-measure from our
EyeGrab experiment with the results obtained from our previous work [15]. The
best performing parameters were determined in the previous work by means of
a training set and applied to the test set of [15] and to the EyeGrab data. The
parameters are k = 0.1 for the segmentation measure, t = 95 for the heat map
measures, and k = 0.4 for the baseline. The results are depicted in Figure 7.

The segmentation measure performs best, while the baseline approach de-
livers clearly weaker results than both eye tracking methods. The F-measure
results are more diverse. The differences between the two gaze-based measures
and the baseline are less distinct for the EyeGrab data than for the data from



the previous experiment [15] (i. e., the results between the measures and base-
line in our earlier experiment differ more). Using the parameters from earlier
work [15] for the EyeGrab analysis delivers only slightly better results for the
segmentation approach than the baseline, whereas the heat map approach per-
forms clearly better. We compare the center baseline results for photos of the
first experiment [15] and EyeGrab data in a Mann-Whitney U test and do not
obtain a significant difference, neither for precision (U = 467, p = .291) nor for
F-measure (U = 446, p = .302). Thus, we conclude that the photo sets are com-
parable concerning the center baseline results and infer that the region labeling
results can be compared. No statistically significant differences can be found
comparing the results from EyeGrab and our previous work [15] with regard to
the segmentation measure and the heat map measure, neither for precision (seg-
mentation: U = 528, p = .909; heat map: U = 480, p = .467), nor for F-measure
(segmentation: U = 436, p = .19; heat map: U = 468, p = .376). Thus, we con-
clude that we can obtain similar results in region labeling in EyeGrab and the
previous, simplified experiment [15].

Fig. 7. Region labeling results for EyeGrab and previous work [15].

9 Conclusion

We have shown that the labeling of image regions is possible from data collected
from subjects playing the immersive game-with-a-purpose EyeGrab. For one of
two gaze-based measures, the results are comparable to those from a previous
experiment [15]. This is quite interesting as the conditions for obtaining the
gaze data are more difficult due to factors like time pressure and distraction
by the gaming environment in EyeGrab. The region labeling results are only
slightly influenced by different speed levels, which are forcing the subjects to
make decisions on the photo classifications faster. As a broader spread of eye
tracking hardware is assumed for the near future, it will become possible to use



eye tracking technology in everyday tasks like image search on the web or for
playing games. Thus, the results of our research may be applied for labeling
image regions based on the gaze data obtained from users viewing the results of
image search engines.
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