Mazarakis, Athanasios; Lemke, Steffen; Peters, Isabella

Conference Paper

Tweets and Scientific Conferences: The Use Case of the Science 2.0 Conference – Revisited

This Version is available at:
http://hdl.handle.net/11108/353

Kontakt/Contact
ZBW – Leibniz-Informationszentrum Wirtschaft/Leibniz Information Centre for Economics
Düsternbrooker Weg 120
24105 Kiel (Germany)
E-Mail: info@zbw.eu
http://zbw.eu/de/ueber-uns/profil/veroeffentlichungen-zbw/

Terms of use:
This document may be saved and copied for your personal and scholarly purposes. You are not to copy it for public or commercial purposes, to exhibit the document in public, to perform, distribute or otherwise use the document in public. If the document is made available under a Creative Commons Licence you may exercise further usage rights as specified in the licence.
Microblogging activity as supported by Twitter has rapidly gained a lot of attention within the scientific community. For example, the organizers of scientific conferences started exploiting Twitter for various reasons, e.g., engaging customers via backchannel, or providing awareness support for stakeholders. We assume that there is no equal distribution of Twitter activity over time. Instead we argue that there are particular events or occasions that lead to peaks in the number of tweets. Clearly distinguishable peaks can be used by conference organizers to promote or announce information. This might be helpful because many people use Twitter during these moments and Twitter awareness is presumably high. Our testbed is the Science 2.0 conference which took place from 26th to 27th March, 2014 in Hamburg, Germany. 1,879 conference-related tweets (including retweets) were collected between 14.03.2014 and 14.04.2014.

The tweets were analyzed separately: 1) for 153 registered conference attendees, and 2) for people that attended the conference remotely. We manually compared the complete participant list (email addresses and names included) with Twitter accounts which sent conference-related tweets. In total 822 tweets (68%) came from conference attendees versus 392 unique tweets (32%) from external contributors who were also more likely to retweet (24% vs. 74%).

Additionally, we conducted a content analysis of all tweets by using a self-provided codebook that contained three classes: purpose of tweet, target of web link (if embedded in the tweet), and topical relation to “Science 2.0”. The purpose of over 80% of the tweets was to share conference content or resources. Pictures and the conference website were the most often tweeted link targets (65%). The top four content categories occurred in 11% to 15% of tweets and were “scientific working methods,” “web topics,” “projects & research programs,” and “open science & open data” reflecting what the audience was most interested in. These results help to understand Twitter behavior regarding time and content, in order to support the construction of an algorithm for the automatic detection of important conference events to assist for the conference organizers needs.

This study provides a threefold additional value: 1) conference organizers know when to announce important conference-related information to the audience via Twitter, 2) the first two classes of the validated codebook are transferable to studies in a similar vein and can be easily reused from the community, and 3) supports recording of user feedback to conference topics and highlights.

Keywords: twitter; user engagement; conference backchannel, conference tweets, scholarly communication
1. **Introduction and Motivation**

Microblogging activity as supported by tools like Twitter has been growing rapidly and usually people use Twitter to talk about daily activities or retrieve and share different kinds of information (Java et al., 2007). But, microblogging also has become the center of attention both in scientific discourse (Reinhardt et al., 2009) as well as in discussion within the scientific community (Ross et al., 2011). Especially the organizers of scientific conferences and the users of conference management systems could use social networking services (such as Twitter) to provide awareness support for all stakeholders (Reinhardt et al., 2011).

Tweeting, especially during scientific conferences, is a popular activity amongst scholars and it is mainly used for sharing information with followers and other peers (Mahrt, Weller and Peters, 2014). Such uses of Twitter strengthen its position as effective tool for information dissemination which has also been acknowledged by conference organizers and participants. Three main scenarios for Twitter at conferences have been identified (Reinhardt et al., 2009):

- **Before a conference:** To promote the conference, general information and other related aspects (dates, keynotes, workshops and other events) can be posted on Twitter. Another important aspect is to remind people of upcoming deadlines for conference submissions or early bird fees. The final goal is to increase excitement for the conference and to have a community of early adopters talking about it and spreading the word via their follower-networks.
- **During a conference:** Last minute changes or the announcement of meetings are principal points during the conference and can be quickly distributed with tweets. But also discussions on conference presentations among conference attendees (and lurkers on Twitter not attending the conference) can take place on Twitter. Questions can be raised and answered by the microblogging audience as well as the conference speakers or attendees (e.g., if publicly displayed on so-called Twitter walls onsite). The use of a specific conference hashtag is favorable, because otherwise thematic grouping of tweets is more difficult.
- **After a conference:** The conference organizers can use tweets to thank the attendees and speakers as well as for asking for feedback. Also references (e.g., URLs) to other media outlets concerning the conference (e.g., blog posts or newspaper articles) can be tweeted.

Hence, microblogging at conferences is a promising way to discuss presented topics and also to exchange additional information with other participants. Twitter enables participation in different topics and discussions related to the conference in an active and virtual way. Here, especially the hashtag-feature, which is a “#” sign followed by a specific string like a name, date, or a unique code is valuable. Tweets can be grouped with a hashtag and enable easy following of topics often used for a specific period of time (Reinhardt et al., 2009). Moreover, microblogging at a conference can be seen as a kind of backchannel communication linking the speakers and the audience more intensively. Technically this is supported by using the “@” sign followed by a user name to directly reference other Twitter users and raising the attention of this particular recipient (Ross et al., 2011).

Since Twitter automatically saves a time stamp for every tweet, a timeline of conference-related tweets can be built and Twitter conversations can be chronologically followed. That Twitter function allows for time-specific analysis of tweets in order to get information on when Twitter usage is intensive and conference attendees, presumably, can best be reached via tweets. Also, times of heavy tweeting can be linked to the conference program (or more specifically particular presentations) to reveal highly discussed, and therefore relevant conference content which might spark further discussions (or boring topics if we assume that people tweet when the conference is less engaging). Thus, understanding time-specific tweeting behavior of conference attendees would help conference organizers distribute important data.
information more effectively and add value for tweeting conference attendees. It is important to note, that Twitter recently announced a change of this principle (Sherr, 2014).

Hence, the main purpose of this study is the analysis of conference tweets over time. Previous studies often analyzed tweets only on a daily basis (Ross et al., 2011), but facing tight conference schedules we are interested in a more granular analysis. Therefore, we take a more detailed look at tweets and analyze them on an hourly and half-hourly basis. The underlying research question is that there is no equal distribution of tweets over time but that there are particular events or occasions that lead to peaks in Twitter activity. If there is evidence for clearly distinguishable peaks found in the mass of conference tweets the peaks can be used by conference organizers to promote or announce information, because many people use Twitter during these moments and Twitter awareness is high. One possible application might be the automatic detection of peaks.

Finding whether peaks are content related or related to the structure of the schedule, the prediction of such peaks might help to give additional support to conference participants when it is actually needed. To master this challenge the analysis and categorization of “normal” tweet-behavior and the comparison with tweet-behavior at scientific conferences is necessary. In order to create a reproducible and reliable method of tweet categorization for content-based analyses of peaks particular effort was put on the development of a codebook to guarantee high inter-rater-reliability.

This preliminary study is work in progress and aims to successfully master the first steps in this direction. Additionally we are interested in the different kind of tweets as can be described by the purpose of the tweet, the target of a web link (if embedded in the tweet), and finally the content itself.

2. Methods for Evaluation and Analysis
We will now present the purpose and the design of this study and its analysis. Our testbed for data collection is the Science 2.0 conference which took place from 26th to 27th March, 2014 in Hamburg, Germany. The conference had 153 registered attendees and joined people interested in the changing landscape of scholarly communication, research and publication technologies as embraced by increased use of social media. The Science 2.0 conference organizers maintained their own Twitter account (@lfvscience20) and the use of Twitter was actively encouraged by the conference organizers, e.g., by having promoted the conference hashtag and having set up Twitter walls around the conference venue. The conference only had one track at a time and several breaks during the day.

All tweets related to the Science 2.0 conference were collected with the tool TwapperKeeper. The following hashtags and keywords were used to filter the tweets:

- #sci20conf
- science 2.0
- science 20
- “science 2.0”
- “science 20”
- science20
- science2.0

The tweets were observed and collected between 14.03.2014 and 14.04.2014. In total 1,879 tweets were collected. Since TwapperKeeper collects tweets in different archives double counted tweets had to be removed before the analysis (665 tweets were deleted). Redundancy is a feature of TwapperKeeper,
which helps collecting all tweets and therefore reduces the risk of losing any tweets. Also, all retweets (489, indicated by RT) and modified tweets (49, often indicated by MT) were removed resulting in 676 tweets for the content analysis.

The tweets were analyzed separately: first for the group of conference attendees and second for people that did not attend the conference in person. This was possible, because we had access to the participant list. Then we manually checked the Twitter accounts and the email-addresses of the attendees with the different Twitter accounts and checked for concurrence.

3. Results
The analysis of the user-specific tweeting behavior reveals a power law distribution of all conference tweets. Only few users tweet very often, whereas the majority of users tweets only occasionally resulting in a small amount of sent tweets (maximum number of tweets for an individual user: 95; mean of tweets per user: 6.83; standard deviation of tweets per user: 15.62; the median number of tweets is 1, because 51.5% of the users sent only one tweet). The distribution can be seen in Figure 1. This phenomenon is popular for analyses of web data (Letierce et al., 2010; Ross et al., 2011).

As depicted in Figure 2 there are two dominant peaks in the Twitter activity during the conference. The first one is on the first day at 10am and the other one is on the second day at 11am. By observing the conference schedule and matching it with the peaks, we found out that peak number one is close to the beginning of the conference and peak number two is close to the end of the first coffee break on the second day.

We can identify four additional peaks. The peaks three and five are close at the end of the lunch at day one, respectively day two. The peaks four and six are close at the end of the coffee break, again at the days one and two.

![Figure 1: Distribution of all tweets](image)

489 from the 1,214 tweets are retweets (40%) and the remaining 725 (60%) are not retweets. Also 718 tweets (59%) contain the “@” sign. This ratio is comparable to other studies as well (Ross et al., 2011). But this ratio might be misleading, because also retweets are counted. Therefore we take a different
approach to counter a retweet-bias and look additionally at tweets with a “@” sign, which are no retweets. This results in 229 remaining tweets (19%).

Figure 2: Tweets and peaks for the two conference days

648 tweets (53%) included a link. But again this number might be too high, because links can be retweeted. The removal of tweets with a link and which are also retweets led us to 287 remaining tweets (24%). The ratio is actually identical to the results of Ross et al. (2011). The analysis also revealed that we have a similar number of “@” signs and tweets with a link in the set of sent conference-related tweets.

Figure 3: Tweets per hour for the period between 24.03.2014 and 29.03.2014

Figure 3 shows the tweets per hour for the period of 24.03.2014 until the 29.03.2014 which includes the conference days (26.03.2014 and 27.03.2014). This figure gives therefore a brief overview of the distribution of tweets before, meanwhile and after the conference took place.
A final result which we want to report is the comparison of tweets of conference attendees versus the number of tweets from people which were not in person at the conference. In total 822 tweets (68%) came from conference attendees versus 392 tweets (32%) were from external contributors. This finding counters the results from Ebner et al. (2010) by showing that a significant amount of non-participants of the conference participated in the discussion on Twitter about the Science 2.0 conference.

It can be further stated, that conference attendees had 200 tweets with a retweet (24% from a total of 822 tweets). Whereas 289 tweets (74% from a total of 392 tweets) from the external contributors were retweets. This indicates that external contributors are more likely to retweet first-hand conference-related content than to post anything else. As such they act as multipliers spreading the information to their network of followers. For conference organizers that means that not only conference attendees should be addressed but also remote participants.

3.1 Content analysis

Despite that the chronological accumulation of tweets is important for conference organizers, also the information about the content of the tweets at different points in time is valuable in order to better understand reasons for peaks. Therefore we conducted a content analysis of all tweets with regard to three classes: purpose of the tweet, target of a web link (if embedded in the tweet) and finally if the content is at least loosely connected to Science 2.0. A content analysis of public tweets can for example reveal different aspects of personal life (Humphreys, Gill and Krishnamurthy, 2014).

The creation of categories for each class was inspired by two past works:

- Reinhardt et al. (2009) proposed six categories (sharing resources; communicate with others; participate in parallel discussion; jot down notes; establish online presence; post organizational questions);
- Ross et al. (2011) proposed seven categories (comments on presentation; sharing resources; discussion/conversation; jot down notes; establish online presence; post organization questions; ambiguous).

Our qualitative analysis differs in the number of categories per class. This will be explained further in the upcoming subsections. If a tweet might fit in two or more categories, the raters were advised to choose this category, which fits best, disregarding any additional categories. In total three different raters analyzed a subset of 100 randomly selected tweets and conducted the coding with the help of a codebook. Statistical findings about the inter-rater-reliability will be provided for each class.

3.1.1 Purpose

The first class of the content analysis is the class “purpose”. Raters used six categories for the coding of 676 tweets (see Table 1). Almost the same number of tweets deals with conference content or shares resources (see Figure 4).
Table 1: Class “Purpose” with six different categories

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Category</th>
<th>Description of the category</th>
<th>Tweet examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Conference content</td>
<td>Tweets which report concrete contents of the conference, mostly about a presentation, or provide new perspectives to discuss Science 2.0 topics.</td>
<td>“Culture clash between Libraries and Library customer. Cause different languages. #sci20conf”</td>
</tr>
<tr>
<td>O</td>
<td>Organizational aspects and announcements</td>
<td>Tweets which are about organizational information concerning the conference, for example tweets about the conference schedule.</td>
<td>“Will the recordings of #sci20conf talks be made available as video files?”</td>
</tr>
<tr>
<td>N</td>
<td>Note/Snapshot</td>
<td>Tweets which have no professional contents or are no starting point for discussions. They are mostly small talks.</td>
<td>“On my way to #sci20conf”</td>
</tr>
<tr>
<td>B</td>
<td>Conditions of the conference</td>
<td>Tweets with reference to the conference, which have no professional contents but discuss some contextual aspects (food, equipment, etc.)</td>
<td>“I agree, #sci20conf was pretty much perfectly organized, thanks a lot! Only one little point: Next timer better coffee, please ;)”</td>
</tr>
<tr>
<td>T</td>
<td>Sharing of resources</td>
<td>Tweets which share and spread resources through links.</td>
<td>“I'm sharing great #sci20conf posts on my site. Come take a look: http://t.co/gissYxTffu”</td>
</tr>
<tr>
<td>A</td>
<td>Other events</td>
<td>Tweets which advertise other conferences or compare them with the Science 2.0 conference.</td>
<td>“Today's conference hashtags to follow: #dhd2014 (continued), #sci20conf, #c4l14”</td>
</tr>
</tbody>
</table>

Together, conference content and sharing of resources account for more than 80 % of the class purpose. Note/snapshot is also popular, but each of the remaining categories fails to achieve more than 4 % of tweets.

Fleiss’ kappa is .60, with Cohen’s kappa for the comparison of the three raters having values of .46, .66 and .67. The total level of agreement among all raters is 68%, with individual comparison values of 69%, 81% and 82%. The overall inter-rater-reliability can be considered as moderate with two comparisons.
achieving substantial strength of agreement (Landis and Koch, 1977). All results are statistically significant to at least 1% level.

Figure 4: Distribution of tweets for the class "purpose" (x-axis=categories; y-axis=number of tweets)

3.1.2 URL

The second class used in the content analysis is the class “URL”. This content analysis considers only tweets with a web link, 415 tweets are without URL. Raters used the nine categories shown in Table 2 for the coding of 261 tweets. Most tweets link to pictures or to the website of the conference (see Figure 5).
Table 2: Class “URL” with ten different categories

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Category</th>
<th>Description of the category</th>
<th>Tweet examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>KO</td>
<td>Website of the conference</td>
<td>The first link of the tweet leads to the website of the conference Science 2.0 or to one of its subdirectories.</td>
<td>“How will #socialmedia change research and publication processes? Registration for http://t.co/zS0sxFmmvb still open #openscience #sci20conf”</td>
</tr>
<tr>
<td>DO</td>
<td>Documents</td>
<td>The first link of the tweet leads to a document, usually a PDF or to a download page.</td>
<td>Paper by Salganik, Dodds and Watts 2006 paper on the rich get richer phenomenon in music markets http://t.co/ANytRUPTh7 #sci20conf”</td>
</tr>
<tr>
<td>BI</td>
<td>Pictures</td>
<td>The first link of the tweet leads to a picture.</td>
<td>“More on Scolarlib from poster session #SCI20CONF http://t.co/cBTS72fY58”</td>
</tr>
<tr>
<td>FO</td>
<td>Presentation slides</td>
<td>The first link of the tweet leads to presentation slides (mostly in Slideshare⁴).</td>
<td>“VIVO for Scientific Communities - slides from @inablu & me for our #sci20conf lightning talk today 14:00 CET: http://t.co/OUqdFBNSKw”</td>
</tr>
<tr>
<td>VI</td>
<td>Video</td>
<td>The first link of the tweet leads to a video.</td>
<td>“Explaining Video to EEXCESS http://t.co/OMbYyyBwH2. #sci20conf”</td>
</tr>
<tr>
<td>BL</td>
<td>Blog</td>
<td>The first link of the tweet leads to a blog (typical blog structure with articles in chronological order and comment function).</td>
<td>“check out the blog of the Swiss Special Interest Groups Science 2.0 http://t.co/fikDEpw6gV #sci20conf”</td>
</tr>
<tr>
<td>AR</td>
<td>Article</td>
<td>The first link of the tweet leads to an article on a website, which isn’t a blog.</td>
<td>“Information about open research data in Horizon 2020 http://t.co/8Cnu9N3XYn #sci20conf #servicetweet”</td>
</tr>
<tr>
<td>WE</td>
<td>Web portal</td>
<td>The first link of the tweet leads to a web portal, which stores data, for example Lanyrd⁵ or Eventifier⁶.</td>
<td>“My Facebook Album about #sci20conf with a few boat trip pictures ;-) https://t.co/C3oER4Ar6G”</td>
</tr>
</tbody>
</table>

⁴ http://www.slideshare.net/
⁵ http://lanyrd.com/
⁶ http://eventifier.com/
### Acronym	Category	Description of the category	Tweet examples
OR | Organization | The link of the tweet leads to the website of an organization without referring to a specific article. In this category belong also project websites. | “Interesting EU project on book sprints at http://t.co/V9iTiMxLNI #sci20conf”

Roughly 5 to 6% of tweets fall into the categories article, web portal, and video. The remaining categories apply to only 3% of tweets each.

Fleiss’ kappa is .85, with Cohen’s kappa for the comparison of the three raters having values of .79, .79 and .96. The total level of agreement among all raters is 88%, with individual comparison values of 89%, 89% and 98%. The overall inter-rater-reliability can be considered as substantial with one comparison even achieving almost perfect strength of agreement (Landis and Koch, 1977). All results are statistically significant to at least 1% level.

An additional inter-reliability-analysis has been conducted to analyze, if the detection of links was successfully accomplished by the raters. Fleiss’ kappa is .99, with Cohen’s kappa for the comparison of the three raters having values of .98, .98 and 1.00. The total level of agreement among all raters is 99%, with individual comparison values of 99%, 99% and 100%. The overall inter-rater-reliability can be considered as almost perfect strength of agreement (Landis and Koch, 1977). All results are statistically significant to at least 1% level.

![Figure 5: Distribution of tweets for the class "URL" (x-axis=categories; y-axis=number of tweets)](image)

3.1.3 Content

The third class of the content analysis is the class “content”. Of the 676 tweets only those were considered which relate to the context “Science 2.0” in general. Raters used the ten categories shown in Table 3 for the coding of the remaining 414 tweets.
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Category</th>
<th>Examples of topics</th>
<th>Tweet examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIS</td>
<td>Scientific working method</td>
<td>scientific evaluation, Science 2.0-tools, eScience, scientific communication, publication method, Book-Sprints, Exposés, Citizen Science, Science-Hackathons</td>
<td>“citizen science is closely related to science 2.0 through the common tools #sci20conf”</td>
</tr>
<tr>
<td>SOC</td>
<td>Social Web</td>
<td>Social Media, Social Media-Usability, Altmetrics</td>
<td>“Social Media users: Ms Maker, Mr Tech, Mr Classic & Mr Nerd. Mr Classic (photo) is dying out though 2/2 #sci20conf http://t.co/QfloZSmN4e”</td>
</tr>
<tr>
<td>OPE</td>
<td>Open Science & Open Data</td>
<td>Open (Digital) Science, Open Access, Open Data, Copyright</td>
<td>“most important: eu as a public funder of research focus on open access of funded science #sci20conf”</td>
</tr>
<tr>
<td>BIG</td>
<td>Big Data</td>
<td>Big Data</td>
<td>“Interesting to see a social science take on what big data means Schröder #sci20conf”</td>
</tr>
<tr>
<td>KON</td>
<td>Conferences & Lectures</td>
<td>Science 2.0 - Conferences, presentation methods</td>
<td>“Have to stress it again: this format is not discussion friendly. Two short questions and thats it? We need more discussion! #sci20conf”</td>
</tr>
<tr>
<td>BIB</td>
<td>Libraries</td>
<td>Libraries, Usability</td>
<td>“libraries could be the first casulty” (of the new online scholarly system) says David Nicholas #sci20conf”</td>
</tr>
<tr>
<td>UNT</td>
<td>Enterprises & Organizations</td>
<td>Google, Twitter, Elsevier, Wikipedia/-media</td>
<td>“Nicholas: When Science Direct opened physics journals to google, traffic from google accounted for 70% of total within a month #sci20conf”</td>
</tr>
<tr>
<td>Acronym</td>
<td>Category</td>
<td>Examples of topics</td>
<td>Tweet examples</td>
</tr>
<tr>
<td>--------</td>
<td>---------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>BEG</td>
<td>Terms & Concepts</td>
<td>Distinction between terms, Data concept</td>
<td>“is there a difference between escience and science 2.0? iam puzzled. #sci20conf”</td>
</tr>
<tr>
<td>SON</td>
<td>Other</td>
<td>Software development, Science 2.0 in politic, food</td>
<td>“@R_Koenig: Software dev today is neither cathedral nor bazaar, it's mall: highly structured, permanently monitoring customers #sci20conf”</td>
</tr>
</tbody>
</table>

Most tweets are categorized as description of a scientific method (18 %). The same amounts of tweets (15 % each) fall into the categories project & research programs and social web.

Fleiss' kappa is .58, with Cohen's kappa for the comparison of the three raters having values of .50, .53 and .73. The total level of agreement among all raters is 48%, with individual comparison values of 55%, 58% and 77%. The overall inter-rater-reliability can be considered as moderate with one comparison achieving substantial strength of agreement (Landis and Koch, 1977). All results are statistically significant to at least 1% level. Figure 6 displays the distribution of tweets for the class "content".

An additional inter-reliability-analysis has been conducted to analyze, if the detection of the topic Science 2.0 was successfully accomplished by the raters. Fleiss' kappa is .17, with Cohen's kappa for the comparison of the three raters having values of .08, .28 and .32. The total level of agreement among all raters is 81%, with individual comparison values of 82%, 84% and 96%. The overall inter-rater-reliability can be considered as slight, with two comparisons achieving fair strength of agreement (Landis and Koch, 1977). All results are statistically significant to at least 5% level.

The last result needs some anticipated explanation. A closer look at this finding reveals that the raters had a high level agreement when they categorized actual Science 2.0 tweets. But the raters disagreed somewhat if a tweet is truly Science 2.0 related or not. This explains at one hand the high level of agreement and at the other hand the low kappa values. Additionally one has to keep in mind, that for this class the raters had to choose from eleven different categories. This task is more difficult than the usual categorization with two or three categories. Also the measurement of the strength of agreement needs lower kappa levels (Landis and Koch, 1977).
3.2 Content analysis of the peaks

As already depicted, we identified six peaks during the two days of the conference. With respect to the three classes purpose, URL and content, we can provide the following findings:

- On average 32% more conference content is tweeted during the peaks (63% vs. 43%) except for the last peak (28%).
- The class URL has no noticeable differences of preferred tweet categories for the six peaks.
- The content of the tweets varied very much for the different peaks, in accordance to the concurrent presentation.

Controversial presentations received more attention on Twitter but this effect is only short-termed. Merely one presentation led to a discussion which was still ongoing one hour after the end of this presentation. Other discussions about controversial presentations did not last longer than 30 minutes.

4. Conclusion and Future Work

A four-weeks-period of tweets related to the Science 2.0 conference was analyzed regarding Twitter activity and tweet content. During the conference Twitter activity is very high, but there is almost no activity noticeable directly before or after the conference. Moreover, Twitter activity is highest after lunch and coffee breaks, which corresponds to the results of another Twitter related study (Puschmann, Weller and Dröge, 2011). We may conclude that any Twitter related activity, information or regulation of the conference organizers should happen at these moments, because the Twitter awareness reaches a maximum level then.

For future work more in-depth analyses will be done, using sophisticated quantitative and qualitative methods, which are a feasible and proved way to continue the analysis (Ross et al., 2011). For example after the qualitative analysis of the hashtags we will conduct a factor analysis. The categories of this study will be matched for example to the work of Reinhardt et al. (2009), who proposed six categories (sharing resources; communicate with others; participate in parallel discussion; jot down notes; establish online presence; post organizational questions) and Ross et al. (2011) who proposed seven categories (comments on presentation; sharing resources; discussion/conversation; jot down notes; establish online presence; post organization questions; ambiguous).
Also, the comparison of “normal” Twitter behavior with Twitter behavior at scientific conferences is possible. With the help of an elaborated codebook we received moderate inter-rater-reliability values for the categorization of tweets’ content and purpose, but high values for the class “URL”. That shows that a content-based analysis of tweets can reveal separate classes of tweets which might be a starting point for the development of algorithms to predict the evolution of a given Twitter discussion according to the different categories used in this study and certain points in time. The long term objective of the usage of such an algorithm is to distinguish between tweets related to conferences and others, to moderate Twitter activity (e.g., stirring up debates during less interesting presentations), and to keep awareness of all twitterers high.

Acknowledgements: We thank Steffen Lemke and Ermeline Jaggi for the initial tweet analysis and preliminary evaluation.

References

